1、七年级下册乌鲁木齐数学期末试卷测试卷(含答案解析) 一、选择题 1.如图,∠1和∠2不是同位角的是( ) A. B. C. D. 2.在下列现象中,属于平移的是( ). A.荡秋千运动 B.月亮绕地球运动 C.操场上红旗的飘动 D.教室可移动黑板的左右移动 3.如图,小手盖住的点的坐标可能为( ) A. B. C. D. 4.下列四个命题,①连接两点的线段叫做两点间的距离;②经过两点有一条直线,并且只有一条直线;③两点之间,线段最短;④线段的延长线与射线是同一条射线.其中说法正确的有( ) A.1个 B.2个 C.3个 D.4个 5.将一副三
2、角板按如图放置,如果,则有是( ) A.15° B.30° C.45° D.60° 6.下列运算正确的是( ) A.=﹣6 B. C.=±2 D.2×3=5 7.如图,已知直线,的平分线交于点F,,则等于( ) A. B. C. D. 8.如图,动点P从点出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为……第2021次碰到长方形边上的坐标为( ) A. B. C. D. 二、填空题 9.算术平方根等于本身的实数是__________. 10.在平面直角坐标系中,
3、若点和点关于轴对称,则____. 11.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为_____. 12.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=72°,则∠AED′=__. 13.如图,将一张长方形纸片沿EF折叠后,点A,B分别落在A′,B′的位置.如果∠1=59°,那么∠2的度数是_____. 14.“”定义新运算:对于任意的有理数a和b,都有.例如:.当m为有理数时,则等于________. 15.如图,在平面直角坐标系中,已知点,,连接,交y轴于
4、B,且,,则点B坐标为__. 16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点Pn(n为正整数),则点P2020的坐标是______. 三、解答题 17.计算下列各式的值: (1)|–2|– + (–1)2021; (2). 18.求下列各式中x的值: (1) (2) 19.已知:如图,DB⊥AF于点G,EC⊥AF于点H,∠C=∠D.求证:∠A=∠F. 证明:∵DB⊥AF于点G,EC⊥AF于点
5、H(已知), ∴∠DGH=∠EHF=90°( ). ∴DB∥EC( ). ∴∠C= ( ). ∵∠C=∠D(已知), ∴∠D= ( ). ∴DF∥AC( ). ∴∠A=∠F( ). 20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上, (1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B的坐标; (2)在(1)的条件下,将三角形ABC先向右平移4个单位长度
6、再向上平移2个单位长度后可得到三角形A'B'C',请在图中画出平移后的三角形A'B'C',并分别写出点A',B',C'的坐标. 21.已知:a是的小数部分,b是的小数部分. (1)求a、b的值; (2)求4a+4b+5的平方根. 二十二、解答题 22.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题. (1)阴影正方形的面积是________?(可利用割补法求面积) (2)阴影正方形的边长是________? (3)阴影正方形的边长介于哪两个整数之间?请说明理由. 二十三、解答题 23.已知,点为平面内一点,于. (1
7、如图1,求证:; (2)如图2,过点作的延长线于点,求证:; (3)如图3,在(2)问的条件下,点、在上,连接、、,且平分,平分,若,,求的度数. 24.如图1,,E是、之间的一点. (1)判定,与之间的数量关系,并证明你的结论; (2)如图2,若、的两条平分线交于点F.直接写出与之间的数量关系; (3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求的大小. 25.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E. (1)如图1,点D在线段CG上运动时,DF平分∠EDB ①若∠BAC=10
8、0°,∠C=30°,则∠AFD= ;若∠B=40°,则∠AFD= ; ②试探究∠AFD与∠B之间的数量关系?请说明理由; (2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由 26.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1. (1)当∠A为70°时, ∵∠ACD-∠ABD=∠______ ∴∠ACD-∠ABD=______° ∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线 ∴∠A1CD-∠A1BD=(∠ACD-∠ABD) ∴∠A1=______
9、°; (2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An的数量关系______; (3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______. (4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值. 【参考答案】 一、选择题 1.D 解析:D
10、 【分析】 根据同位角的定义,“在两条被截直线的同方,截线的同侧的两个角,即为同位角”直接分析得出即可. 【详解】 解:A、∠1和∠2是同位角,故此选项不符合题意; B、∠1和∠2是同位角,故此选项不符合题意; C、∠1和∠2是同位角,故此选项不符合题意; D、∠1和∠2不是同位角,故此选项符合题意; 故选:D. 【点睛】 此题主要考查了同位角的定义,正确掌握同位角定义是解题关键. 2.D 【分析】 根据平移的性质依次判断,即可得到答案. 【详解】 A、荡秋千运动是旋转,故本选项错误; B、月亮绕地球运动是旋转,故本选项错误; C、操场上红旗的飘动不是平移,故
11、本选项错误; D、教室 解析:D 【分析】 根据平移的性质依次判断,即可得到答案. 【详解】 A、荡秋千运动是旋转,故本选项错误; B、月亮绕地球运动是旋转,故本选项错误; C、操场上红旗的飘动不是平移,故本选项错误; D、教室可移动黑板的左右移动是平移,故本选项正确. 故选:D. 【点睛】 本题考查了平移的知识;解题的关键是熟练掌握平移性质,从而完成求解. 3.C 【分析】 根据平面直角坐标系的象限内点的特点判断即可; 【详解】 ∵盖住的点在第三象限, ∴符合条件; 故答案选C. 【点睛】 本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解
12、题的关键. 4.B 【分析】 利用直线和射线的定义、以及线段的性质和两点之间距离意义,分别分析得出答案. 【详解】 解:①连接两点的线段长度叫做两点间的距离,故此选项错误. ②经过两点有一条直线,并且只有一条直线,故此选项正确. ③两点之间,线段最短,故此选项正确. ④线段的延长线是以B为端点延长出去的延长线部分,与射线不是同一条射线故此选项错误. 综上,②③正确. 故选:B. 【点睛】 本题考查了直线、射线、线段的性质和两点之间距离意义,解题的关键是准确理解定义. 5.C 【分析】 根据一副三角板的特征先得到∠E=60°,∠C=45°,∠1+∠2=90°,再根据
13、已知求出∠1=60°,从而可证得AC∥DE,再根据平行线的性质即可求出∠4的度数. 【详解】 解:根据题意可知:∠E=60°,∠C=45°,∠1+∠2=90°, ∵, ∴∠1=60°, ∴∠1=∠E, ∴AC∥DE, ∴∠4=∠C=45°. 故选:C. 【点睛】 本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键. 6.B 【分析】 分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得. 【详解】 A、,此选项计算错误; B、,此选项计算正确; C、,此选项计算错误; D、2×3=6,此选项
14、计算错误; 故选:B. 【点睛】 本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键. 7.B 【分析】 根据平行线的性质推出,,然后结合角平分线的定义求解即可得出,从而得出结论. 【详解】 解:∵, ∴,, ∵的平分线交于点F, ∴, ∴, ∴, 故选:B. 【点睛】 本题考查平行线的性质和角平分线的定义,理解并熟练运用平行线的基本性质是解题关键. 8.A 【分析】 该题属于找规律题型,只要把运动周期找出来即可解决. 【详解】 由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(
15、1,4)(5,0)(8,3)(7,4)(3 解析:A 【分析】 该题属于找规律题型,只要把运动周期找出来即可解决. 【详解】 由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3,0)由此可以得出运动周期为6次一循环, 2021÷6=366……5, 第2021次碰到长方形的边的点的坐标为(7,4), 故选:A. 【点睛】 本题主要考查了规律性,图形的变化,解题关键是明确反弹前后特征,发现点的变化周期,利用变化周期循环规律解答. 二、填空题 9.0或1 【详解】 根据负数没有算术平方根,一个正数的算
16、术平方根只有一个,1和0的算术平方根等于本身,即可得出答案. 解:1和0的算术平方根等于本身. 故答案为1和0 “点睛”本题考查了算术平方根的知 解析:0或1 【详解】 根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案. 解:1和0的算术平方根等于本身. 故答案为1和0 “点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身. 10.【分析】 关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题. 【详解】 解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称, ∴,
17、 解得:, 则=. 故 解析: 【分析】 关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题. 【详解】 解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称, ∴, 解得:, 则=. 故答案为:. 【点睛】 本题考查关于y轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键. 11.4cm 【详解】 ∵BC=10cm,BD:DC=3:2, ∴BD=6cm,CD=4cm, ∵AD是△ABC的角平分线,∠ACB=90°, ∴点D到AB的距离等于DC,即点D到AB的距离等于4cm. 解
18、析:4cm 【详解】 ∵BC=10cm,BD:DC=3:2, ∴BD=6cm,CD=4cm, ∵AD是△ABC的角平分线,∠ACB=90°, ∴点D到AB的距离等于DC,即点D到AB的距离等于4cm. 12.36° 【分析】 根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值. 【详解】 解:∵四边形ABCD为长方形, ∴AD//BC, ∴∠DEF= 解析:36° 【分析】 根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值. 【详解】 解:∵四边形AB
19、CD为长方形, ∴AD//BC, ∴∠DEF=∠EFB=72°, 又由折叠的性质可得∠D′EF=∠DEF=72°, ∴∠AED′=180°﹣72°﹣72°=36°, 故答案为:36°. 【点睛】 本题考查了平行线的性质,折叠的性质,熟练掌握折叠的性质是解答本题的关键. 13.62° 【分析】 根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁 解析:62° 【分析】 根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠
20、EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.:求出即可. 【详解】 解:∵将一张长方形纸片沿EF折叠后, 点A、B分别落在A′、B′的位置,∠1=59°, ∴∠EFB′=∠1=59°, ∴∠B′FC=180°−∠1−∠EFB′=62°, ∵四边形ABCD是矩形, ∴AD∥BC, ∴∠2=∠B′FC=62°, 故答案为:62°. 【点睛】 本题考查了对平行线的性质和折叠的性质的应用,解此题的关键是求出∠B′FC的度数,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.
21、 14.101 【分析】 根据“”的定义进行运算即可求解. 【详解】 解:=== =101. 故答案为:101. 【点睛】 本题考查了新定义运算,理解新定义的法则是解题关键. 解析:101 【分析】 根据“”的定义进行运算即可求解. 【详解】 解:=== =101. 故答案为:101. 【点睛】 本题考查了新定义运算,理解新定义的法则是解题关键. 15.【分析】 由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出. 【详解】 解:(1),, ,,, ,, . 如图,连接,设, ,
22、 解析: 【分析】 由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出. 【详解】 解:(1),, ,,, ,, . 如图,连接,设, , , , , , 点的坐标为, 故答案是:. 【点睛】 本题考查了立方根及算术平方根、完全平方公式、三角形的面积、坐标与图形的性质,解题的关键是利用分割的思想解答. 16.【分析】 先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案. 【详解】 解:由题意得:点的坐标是, 点的坐标是, 点的坐标是, 点的坐标是, 归纳类推得:点的坐
23、标是,其中为正整数, 因为 解析: 【分析】 先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案. 【详解】 解:由题意得:点的坐标是, 点的坐标是, 点的坐标是, 点的坐标是, 归纳类推得:点的坐标是,其中为正整数, 因为, 所以点的坐标是, 故答案为:. 【点睛】 本题考查了点坐标规律探索,正确归纳类推出一般规律是解题关键. 三、解答题 17.(1)3;(2)–2 【分析】 (1)根据绝对值、立方根、乘方解决此题. (2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题. 【详解】 解:(1)原式=, =3. (2)原式,
24、 = 解析:(1)3;(2)–2 【分析】 (1)根据绝对值、立方根、乘方解决此题. (2)先用乘法分配律去括号,从而简化运算.再根据算术平方根解决本题. 【详解】 解:(1)原式=, =3. (2)原式, =3+1-6, =–2. 【点睛】 本地主要考查绝对值、立方根、算术平方根以及乘方,熟练掌握绝对值、立方根、算术平方根以及乘方是解决本题的关键. 18.(1);(2) 【分析】 (1)先移项,再把系数化1,然后根据平方根的性质,即可求解; (2)先移项,再根据立方根的性质,即可求解. 【详解】 (1)解:∵ ∴ ∴ ∴; (2)解:∵ ∴
25、∴ ∴. 解析:(1);(2) 【分析】 (1)先移项,再把系数化1,然后根据平方根的性质,即可求解; (2)先移项,再根据立方根的性质,即可求解. 【详解】 (1)解:∵ ∴ ∴ ∴; (2)解:∵ ∴ ∴ ∴. 【点睛】 本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键. 19.垂直的定义;同位角相等,两直线平行;∠DBA;两直线平行,同位角相等;∠DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 先证DB∥EC,得∠C=∠DBA,再证∠D=∠DB 解析:垂直的定义;同位角相等,两直线平行;∠DBA;两直线平
26、行,同位角相等;∠DBA;等量代换;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 先证DB∥EC,得∠C=∠DBA,再证∠D=∠DBA,得DF∥AC,然后由平行线的性质即可得出结论. 【详解】 解:∵DB⊥AF于点G,EC⊥AF于点H(已知), ∴∠DGH=∠EHF=90°(垂直的定义), ∴DB∥EC(同位角相等,两直线平行), ∴∠C=∠DBA(两直线平行,同位角相等), ∵∠C=∠D(已知), ∴∠D=∠DBA(等量代换), ∴DF∥AC(内错角相等,两直线平行), ∴∠A=∠F(两直线平行,内错角相等). 故答案为:垂直的定义;同位角相等,两直线平行
27、∠DBA,两直线平行,同位角相等;∠DBA,等量代换;内错角相等,两直线平行;两直线平行,内错角相等. 【点睛】 本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键. 20.(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1) 【分析】 (1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可. ( 解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1) 【分析】 (1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出
28、点B的坐标即可. (2)分别作出A′,B′,C′即可解决问题. 【详解】 解:(1)平面直角坐标系如图所示:B(0,1). (2)△A′B′C′如图所示.A′(2,1),B′(4,3),C′(5,1). 【点睛】 本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 21.(1)a=﹣3,b=4﹣;(2)±3. 【分析】 (1)根据3<<4,即可求出a、b的值; (2)把a,b代入代数式计算求值,再求平方根即可. 【详解】 解:(1)∵3<<4, ∴11<8+<12, 解析:(1)a=﹣3,b=4﹣;(2)±3. 【分
29、析】 (1)根据3<<4,即可求出a、b的值; (2)把a,b代入代数式计算求值,再求平方根即可. 【详解】 解:(1)∵3<<4, ∴11<8+<12,4<8﹣<5, ∵a是的小数部分,b是的小数部分, ∴a=8+﹣11=﹣3,b=8﹣﹣4=4﹣. (2), ∴4a+4b+5的平方根为:=±3. 【点睛】 本题考查了无理数的估算,求一个数的平方根等知识,能熟练估算的近似值,进而求出a、b的值是解题关键. 二十二、解答题 22.(1)5;(2);(3)2与3两个整数之间,见解析 【分析】 (1)通过割补法即可求出阴影正方形的面积; (2)根据实数的性质即可求解;
30、 (3)根据实数的估算即可求解. 【详解】 (1)阴影正方形的 解析:(1)5;(2);(3)2与3两个整数之间,见解析 【分析】 (1)通过割补法即可求出阴影正方形的面积; (2)根据实数的性质即可求解; (3)根据实数的估算即可求解. 【详解】 (1)阴影正方形的面积是3×3-4×=5 故答案为:5; (2)设阴影正方形的边长为x,则x2=5 ∴x=(-舍去) 故答案为:; (3)∵ ∴ ∴阴影正方形的边长介于2与3两个整数之间. 【点睛】 本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和
31、.会利用估算的方法比较无理数的大小. 二十三、解答题 23.(1)见解析;(2)见解析;(3). 【分析】 (1)先根据平行线的性质得到,然后结合即可证明; (2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a,则∠BFC=3 解析:(1)见解析;(2)见解析;(3). 【分析】 (1)先根据平行线的性质得到,然后结合即可证明; (2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a,则∠BFC=3a,根据角平分线的定义可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根据三角形内角和可得∠BFC+∠F
32、BC+∠BCF=180°,可得∠AFC=∠BCF的度数表达式,再根据平行的性质可得∠AFC+∠NCF=180°,代入即可算出a的度数,进而完成解答. 【详解】 (1)证明:∵, ∴, ∵于, ∴, ∴, ∴; (2)证明:过作, ∵, ∴, 又∵, ∴, ∴, ∵, ∴, ∴, ∴; (3)设∠DBE=a,则∠BFC=3a, ∵BE平分∠ABD, ∴∠ABD=∠C=2a, 又∵AB⊥BC,BF平分∠DBC, ∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45° 又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+
33、45°+∠BCF=180° ∴∠BCF=135°-4a, ∴∠AFC=∠BCF=135°-4a, 又∵AM//CN, ∴∠AFC+∠ NCF=180°,即:∠AFC+∠BCN+∠BCF=180°, ∴135°-4a+135°-4a+2a=180,解得a=15°, ∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°. 【点睛】 本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键. 24.(1),见解析;(2);(3)60° 【分析】 (1)作EF//AB,如图1,则EF//CD,利用平行线
34、的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED; (2)如图2, 解析:(1),见解析;(2);(3)60° 【分析】 (1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED; (2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,根据角平分线的定义得到∠BAF=∠BAE,∠CDF=∠CDE,则∠AFD=(∠BAE+∠CDE),加上(1)的结论得到∠AFD=∠AED; (3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用等量代换
35、得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而可计算出∠BAE的度数. 【详解】 解:(1) 理由如下: 作,如图1, , . ,, ; (2)如图2,由(1)的结论得, 、的两条平分线交于点F, ,, , , ; (3)由(1)的结论得, 而射线沿翻折交于点G, , , , , . 【点睛】 本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等. 25.(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】 (1)①若∠BAC=100°
36、∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由 解析:(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】 (1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出,,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出,,由三角形的外角性质即可得出结果; ②由①得:∠EDB=∠C,,,由三角形的外角性质得出∠DGF=∠B+∠BAG
37、再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C,,,由三角形的外角性质和三角形内角和定理即可得出结论. 【详解】 (1)①若∠BAC=100°,∠C=30°, 则∠B=180°-100°-30°=50°, ∵DE∥AC, ∴∠EDB=∠C=30°, ∵AG平分∠BAC,DF平分∠EDB, ∴,, ∴∠DGF=∠B+∠BAG=50°+50°=100°, ∴∠AFD=∠DGF+∠FDG=100°+15°=115°; 若∠B=40°,则∠BAC+∠C=180°-40°=140°, ∵AG平分∠BAC,DF平分∠EDB, ∴,, ∵∠DGF=∠B+∠
38、BAG, ∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG = 故答案为:115°;110°; ②; 理由如下:由①得:∠EDB=∠C,,, ∵∠DGF=∠B+∠BAG, ∴∠AFD=∠DGF+∠FDG =∠B+∠BAG+∠FDG = ; (2)如图2所示:; 理由如下: 由(1)得:∠EDB=∠C,,, ∵∠AHF=∠B+∠BDH, ∴∠AFD=180°-∠BAG-∠AHF . 【点睛】 本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键. 26
39、.(1)∠A;70°;35°; (2)∠A=2n∠An (3)25° (4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°. 【分析】 (1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD 解析:(1)∠A;70°;35°; (2)∠A=2n∠An (3)25° (4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°. 【分析】 (1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解; (2)由∠A1CD=∠A1+∠
40、A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律; (3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论; (4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠Q
41、CE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系. 【详解】 解:(1)当∠A为70°时, ∵∠ACD-∠ABD=∠A, ∴∠ACD-∠ABD=70°, ∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线, ∴∠A1CD-∠A1BD=(∠ACD-∠ABD) ∴∠A1=35°; 故答案为:A,70,35; (2)∵A1B、A1C分别平分∠ABC和∠ACD, ∴∠ACD=2∠A1CD,∠ABC=2∠A1BC, 而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC, ∴∠BAC=2∠A1=80°, ∴∠A1=40°
42、 同理可得∠A1=2∠A2, 即∠BAC=22∠A2=80°, ∴∠A2=20°, ∴∠A=2n∠An, 故答案为:∠A=2∠An. (3)∵∠ABC+∠DCB=360°-(∠A+∠D), ∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F, ∴360°-(α+β)=180°-2∠F, 2∠F=∠A+∠D-180°, ∴∠F=(∠A+∠D)-90°, ∵∠A+∠D=230°, ∴∠F=25°; 故答案为:25°. (4)①∠Q+∠A1的值为定值正确. ∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线 ∴∠A1=∠A1CD-∠A1BD= ∠BAC, ∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线, ∴∠QEC+∠QCE=(∠AEC+∠ACE)=∠BAC, ∴∠Q=180°-(∠QEC+∠QCE)=180°-∠BAC, ∴∠Q+∠A1=180°. 【点睛】 本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4009-655-100 投诉/维权电话:18658249818