ImageVerifierCode 换一换
格式:PPTX , 页数:17 ,大小:464.13KB ,
资源ID:4885058      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4885058.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(212离散型随机变量的分布列二.pptx)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

212离散型随机变量的分布列二.pptx

1、离散型随机变量的分离散型随机变量的分布列布列(2)(2)回顾复习回顾复习 如果随机试验的如果随机试验的结果结果可以用可以用一个变量一个变量来表示,那么来表示,那么这样的变量叫做这样的变量叫做随机变量随机变量1.1.随机变量随机变量 对于随机变量可能取的对于随机变量可能取的值值,我们可以按一定次序,我们可以按一定次序一一列出一一列出,这样的随机变量叫做,这样的随机变量叫做离散型随机变量离散型随机变量2.2.离散型随机变量离散型随机变量3 3、离散型随机变量的分布列的性质:、离散型随机变量的分布列的性质:例1:已知随机变量的分布列如下:已知随机变量的分布列如下:213210分别求出随机变量分别求出

2、随机变量;的分布列的分布列解:解:且相应取值的概率没有变化且相应取值的概率没有变化的分布列为:的分布列为:110由由可得可得的取值为的取值为 、0、1、例1:已知随机变量的分布列如下:已知随机变量的分布列如下:213210分别求出随机变量分别求出随机变量;的分布列的分布列解:解:的分布列为:的分布列为:由由可得可得的取值为的取值为0、1、4、90941例例 2、在掷一枚图钉的随机试验中在掷一枚图钉的随机试验中,令令如果会尖向上的概率为如果会尖向上的概率为p,试写出随机变量试写出随机变量X的分布列的分布列解解:根据分布列的性质根据分布列的性质,针尖向下的概率是针尖向下的概率是(1p),于是,于是

3、,随机变量随机变量X的分布列是:的分布列是:X01P1pp1、两点分布列、两点分布列象上面这样的分布列称为象上面这样的分布列称为两点分布列两点分布列。如果随机变量。如果随机变量X的分的分布列为两点分布列,就称布列为两点分布列,就称X服从服从两点分布两点分布,而称,而称p=P(X=1)为为成功概率成功概率。练习:练习:1、在射击的随机试验中,令、在射击的随机试验中,令X=如如果射中的概率为果射中的概率为0.8,求随机变量,求随机变量X的分布列。的分布列。0,射中,射中,1,未射中,未射中2、设某项试验的成功率是失败率的、设某项试验的成功率是失败率的2倍,用随机倍,用随机变量变量 去描述去描述1次

4、试验的成功次数,则失败率次试验的成功次数,则失败率p等等于(于()A.0 B.C.D.C例例3 3:在含有在含有5件次品的件次品的100件产品中,任取件产品中,任取3件,试求:件,试求:(1)取到的次品数)取到的次品数X的分布列;的分布列;(2)至少取到)至少取到1件次品的概率件次品的概率.解:(解:(1)从)从100件产品中任取件产品中任取3件结果数为件结果数为从从100件产品中任取件产品中任取3件,其中恰有件,其中恰有K件次品的结果为件次品的结果为 那么从那么从100件产品中任取件产品中任取3件,件,其中恰其中恰好有好有K件次品的概率为件次品的概率为X0123P 一般地,在含有一般地,在含

5、有M件次品的件次品的N件产品中,任取件产品中,任取n件,其中恰有件,其中恰有X件产品数,则事件件产品数,则事件X=k发生的概发生的概率为率为2、超几何分布、超几何分布X01mP称分布列为称分布列为超几何分布超几何分布例例4 4:在某年级的联欢会上设计了一个摸奖游戏,在在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有一个口袋中装有10个红球和个个红球和个20白球,这些球除颜白球,这些球除颜色外完全相同。一次从中摸出色外完全相同。一次从中摸出5个球,至少摸到个球,至少摸到3个个红球就中奖。求中奖的概率。红球就中奖。求中奖的概率。例例5 5:袋中有个袋中有个5红球,红球,4个黑球,从袋中随机取

6、球,个黑球,从袋中随机取球,设取到一个红球得设取到一个红球得1分,取到一个黑球得分,取到一个黑球得0分,现从分,现从袋中随机摸袋中随机摸4个球,求所得分数个球,求所得分数X的概率分布列。的概率分布列。练:练:盒中装有一打(盒中装有一打(12个)乒乓球,其中个)乒乓球,其中9个新的,个新的,3个个旧的,从盒中任取旧的,从盒中任取3个来用,用完后装回盒中,此时个来用,用完后装回盒中,此时盒中旧球个数盒中旧球个数X是一个随机变量。求是一个随机变量。求X的分布列。的分布列。例例6 6:在一次英语口语考试中,有备选的在一次英语口语考试中,有备选的10道试道试题,已知某考生能答对其中的题,已知某考生能答对

7、其中的8道试题,规定每次道试题,规定每次考试都从备选题中任选考试都从备选题中任选3道题进行测试,至少答对道题进行测试,至少答对2道题才算合格,求该考生答对试题数道题才算合格,求该考生答对试题数X的分布列,的分布列,并求该考生及格的概率。并求该考生及格的概率。例例7 7:袋中装有黑球和白球共袋中装有黑球和白球共7个,从中任取个,从中任取2个个球都是白球的概率为球都是白球的概率为 。现有甲、乙两人从袋中。现有甲、乙两人从袋中轮流摸取轮流摸取1球,甲先取,乙后取,然后甲再取球,甲先取,乙后取,然后甲再取取后不放回,直到两人中有一人取到白球时即终取后不放回,直到两人中有一人取到白球时即终止,每个球在每

8、一次被取到的机会是等可能的,止,每个球在每一次被取到的机会是等可能的,用用 表示取球终止时所需要的取球次数。表示取球终止时所需要的取球次数。(1)求袋中原有白球的个数;)求袋中原有白球的个数;(2)求随机变量)求随机变量 的概率分布;的概率分布;(3)求甲取到白球的概率。)求甲取到白球的概率。练习练习 从从110这这10个数字中随机取出个数字中随机取出5个数字,令个数字,令X:取出的取出的5个数字中的最大值试求个数字中的最大值试求X的分布列的分布列具体写出,即可得具体写出,即可得 X 的分布列:的分布列:解:解:X 的可能取值为的可能取值为 5,6,7,8,9,10 并且并且=求分布列一定要说

9、明求分布列一定要说明 k 的取值范围!的取值范围!一盒中放有大小相同的红色、绿色、黄色三种小球,已知一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球的个数是绿球个数的两倍,黄球个数是绿球个数的一红球的个数是绿球个数的两倍,黄球个数是绿球个数的一半,现从该盒中随机取出一球,若取出红球得半,现从该盒中随机取出一球,若取出红球得1分,取出分,取出绿绿 球得球得0分,取出黄球得分,取出黄球得-1分,试写出从该盒内随机取分,试写出从该盒内随机取出一球所得分数出一球所得分数的分布列的分布列.10-1P例例 8、从一批有从一批有10个合格品与个合格品与3个次品的产品中,一个次品的产品中,一件一件的抽取

10、产品,设各个产品被抽到的可能性相同,件一件的抽取产品,设各个产品被抽到的可能性相同,在下列两种情况下,分别求出取到合格品为止时所需在下列两种情况下,分别求出取到合格品为止时所需抽取次数抽取次数 的分布列。的分布列。(1)每次取出的产品都不放回该产品中;)每次取出的产品都不放回该产品中;(2)每次取出的产品都立即放回该批产品中,然后)每次取出的产品都立即放回该批产品中,然后 再取另一产品。再取另一产品。变式引申:变式引申:1、某射手射击目标的概率为、某射手射击目标的概率为0.9,求从开始射击到击中目标,求从开始射击到击中目标所需的射击次数所需的射击次数 的概率分布。的概率分布。2、数字、数字1,

11、2,3,4任意排成一列,如果数字任意排成一列,如果数字k 恰好在第恰好在第k个个位置上,则称有一个巧合,求巧合数位置上,则称有一个巧合,求巧合数 的分布列。的分布列。同理同理 ,思考思考3.3.某射手有某射手有5 5发子弹,射击一次命中的概率为发子弹,射击一次命中的概率为0.9,0.9,如果命中了就停止射击,否则一直射击到子弹用完,如果命中了就停止射击,否则一直射击到子弹用完,求耗用子弹数求耗用子弹数 的分布列的分布列;如果命中如果命中2 2次就停止射击,否则一直射击到子弹用完,次就停止射击,否则一直射击到子弹用完,求耗用子弹数求耗用子弹数 的分布列的分布列解解:的所有取值为:的所有取值为:1

12、、2、3、4、5表示第一次就射中,它的概率为:表示第一次就射中,它的概率为:表示第一次没射中,第二次射中,表示第一次没射中,第二次射中,表示前四次都没射中,表示前四次都没射中,随机变量随机变量的分布列为:的分布列为:43215思考思考3.3.某射手有某射手有5 5发子弹,射击一次命中的概率为发子弹,射击一次命中的概率为0.90.9如果命中如果命中2 2次就停止射击,否则一直射击到子弹用完,次就停止射击,否则一直射击到子弹用完,求耗用子弹数的分布列求耗用子弹数的分布列解:解:的所有取值为:的所有取值为:2、3、4、5表示前二次都射中,它的概率为:表示前二次都射中,它的概率为:表示前二次恰有一次射中,第三次射中,表示前二次恰有一次射中,第三次射中,表示前四次中恰有一次射中,或前四次全部没射中表示前四次中恰有一次射中,或前四次全部没射中随机变量随机变量的分布列为:的分布列为:同理同理5432

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服