1、七年级下册数学期中总复习试卷测试精品一、选择题1100的算术平方根是()A100BCD102下列四幅图案中,通过平移能得到图案E的是( )AABBCCDD3在平面直角坐标系中,点A(m,n)经过平移后得到的对应点A(m+3,n4)在第二象限,则点A所在的象限是()A第一象限B第二象限C第三象限D第四象限4下列四个说法:连接两点之间的线段叫做这两点间的距离;经过直线外一点,有且只有一条直线与这条直线平行;a2的算术平方根是a;的立方根是4其中假命题的个数有()A1个B2个C3个D4个5如图,点E在BA的延长线上,能证明BECD是()AEAD=BBBAD=BCDCEAD=ADCDBCD+D=180
2、6如果1.333,2.872,那么约等于( )A28.72B0.2872C13.3D0.13337一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则1的度数为( )A90B75C65D608如图,在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(-1,3),第四次从点A3跳动到点A4(-1,4),按此规律下去,则点A2021的坐标是( )A(673,2021)B(674,2021)C(-673,2021)D(-674,2021)二、填空题9若=0,则=_ .10已知点在
3、第四象限,则点A关于y轴对称的坐标是_.11如图,BD、CE为ABC的两条角平分线,则图中1、2、A之间的关系为_12如图,点M为CD上一点,MF平分CME若157,则EMD的大小为_度13如图,折叠三角形纸片ABC,使点B与点C重合,折痕为DE;展平纸片,连接AD若AB=6cm,AC=4cm,则ABD与ACD的周长之差为_14新定义一种运算,其法则为,则_15在平面直角坐标系中,已知点P(2,3),PAy轴,PA=3,则点A的坐标为_16如图,在平面直角坐标系中,将正方形依次平移后得到正方形,;相应地,顶点A依次平移得到A1,A2,A3,其中A点坐标为(1,0),A1坐标为(0,1),则A2
4、0的坐标为_三、解答题17计算:(1)(2)18求下列各式中的x值(1)x26(2)(2x1)3=419阅读并完成下列的推理过程如图,在四边形ABCD中,E、F分别在线段AB、AD上,连结ED、EF,已知AFECDF,BCD+DEF180证明BCDE;证明:AFECDF(已知)EFCD ( )DEFCDE( )BCD+DEF180( ) ( )BCDE( )20如图所示正方形网格中,每个小正方形的边长均为1个单位,ABC的三个顶点都在格点上(1)分别写出点A、B、C的坐标;(2)将ABC向右平移6个单位长度,再向下平移4个单位长度,得到A1B1C1,其中点A的对应点是A1,点B的对应点是B1,
5、点C的对应点是C1,请画出A1B1C1,并分别写出点A1、B1、C1的坐标;(3)求ABC的面积21阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:,即23,的整数部分为2,小数部分为(2)请解答:(1)整数部分是 ,小数部分是 (2)如果的小数部分为a,的整数部分为b,求|ab|+的值(3)已知:9+x+y,其中x是整数,且0y1,求xy的相反数22如图,在33的方格中,有一阴影正方
6、形,设每一个小方格的边长为1个单位请解决下面的问题(1)阴影正方形的面积是_?(可利用割补法求面积)(2)阴影正方形的边长是_?(3)阴影正方形的边长介于哪两个整数之间?请说明理由23已知直线AB/CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3旋转至QD停止,此时射线PB也停止旋转(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB与QC的位置关系为 ;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB/QC 24已知点A,B,O在一条直线上,以点O为端点
7、在直线AB的同一侧作射线,使(1)如图,若平分,求的度数;(2)如图,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角若,求的度数;若(n为正整数),直接用含n的代数式表示【参考答案】一、选择题1D解析:D【分析】根据算术平方根的定义求解即可求得答案【详解】解:102=100,100算术平方根是10;故选:D【点睛】本题考查了算术平方根的定义注意熟记定义是解此题的关键2B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的
8、特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离3B【分析】构建不等式求出m,n的范围可得结论【详解】解:由题意,解得:,A(m,n)在第二象限,故选:B【
9、点睛】此题主要考查坐标与图形变化-平移解题的关键是理解题意,学会构建不等式解决问题4C【分析】利用两点间的距离的定义、平行线的判定、算术平方根的定义及立方根的求法分别判断后即可确定正确的选项【详解】解:连接两点之间的线段的长度叫做这两点间的距离,故原命题错误,是假命题,符合题意;经过直线外一点,有且只有一条直线与这条直线平行,正确,是真命题,不符合题意;a2的算术平方根是a(a0),故原命题错误,是假命题,符合题意;的立方根是2,故原命题错误,是假命题,符合题意;假命题有3个,故选:C【点睛】本题主要考查真假命题,两点见的距离,平行线的判定,算术平方根,立方根的求法等知识点,熟知相关定义以及运
10、算法则是解题的关键5C【分析】根据平行线的判定定理对四个选项进行逐一判断即可【详解】解:A、若EAD=B,则ADBC,故此选项错误;B、若BAD=BCD,不可能得到BECD,故此选项错误;C、若EAD=ADC,可得到BECD,故此选项正确;D、若BCD+D=180,则BCAD,故此选项错误故选:C【点睛】本题考查了平行线的判定定理,熟练掌握平行线的判定方法是解题的关键6C【分析】根据立方根的变化特点和给出的数据进行解答即可【详解】解:1.333,故选:C【点睛】本题考查了立方根,如果一个数扩大1000倍,它的立方根就扩大10倍,如果一个数缩小1000倍,它的立方根缩小10倍7B【分析】根据平行
11、线的性质可得FDCF30,然后根据三角形外角的性质可得结果【详解】解:如图,EFBC,FDCF30,1FDC+C30+4575,故选:B【点睛】本题主要考查了平行线的性质以及三角形外角的性质,熟知三角板各个角的度数是解本题的关键8B【分析】根据已知点的坐标寻找规律并应用解答即可【详解】解:A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),A5(2,5),A6(-2,6),A7(-2,7),A解析:B【分析】根据已知点的坐标寻找规律并应用解答即可【详解】解:A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),A5(2,5),A6(-2,6),A7(-2,7),A
12、8(3,8),A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数),3674-1=2021,n=674,所以A 2021(674,2021)故选B【点睛】本题主要考查了点的坐标规律,根据已知点坐标找到A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数)的规律是解答本题的关键二、填空题99【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n2=0,解得:m=3,n=2,则=9.考点:非负数的性质.解析:9【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n2=0,解得:m=
13、3,n=2,则=9.考点:非负数的性质.10【分析】由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解【详解】解:因为在第四象限,则,所以,又因为关于y轴对称,x值相反,y值不变,解析:【分析】由第四象限点的坐标符号是(+,-),可得,关于y轴对称的点,纵坐标相同,横坐标互为相反数,即可求解【详解】解:因为在第四象限,则,所以,又因为关于y轴对称,x值相反,y值不变,所以点A关于y轴对称点坐标为.故答案为.【点睛】本题考查点的坐标的意义和对称的特点关键是掌握点的坐标的变化规律111+2-A=90【分析】先根据三角形的外角等于与它不相邻的两个内角的
14、和,写出1+2与A的关系,再根据三角形内角和等于180,求出1+2与A的度数关系【详解】BD、C解析:1+2-A=90【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出1+2与A的关系,再根据三角形内角和等于180,求出1+2与A的度数关系【详解】BD、CE为ABC的两条角平分线,ABD=ABC,ACE=ACB,1=ACE+A,2=ABD+A1+2=ACE+A+ABD+A=ABC+ACB+A+A(ABC+ACB+A)+A =90+A故答案为1+2-A=90【点睛】考查了三角形的内角和等于180、外角与内角关系及角平分线的性质,是基础题三角形的外角与内角间的关系:三角形的外角与它相邻的
15、内角互补,等于与它不相邻的两个内角的和12【分析】根据ABCD,求得CMF=157,利用MF平分CME,求得CME=2CMF114,根据EMD=180-CME求出结果.【详解】ABCD,CMF=解析:【分析】根据ABCD,求得CMF=157,利用MF平分CME,求得CME=2CMF114,根据EMD=180-CME求出结果.【详解】ABCD,CMF=157,MF平分CME,CME=2CMF114,EMD=180-CME66,故答案为:66.【点睛】此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.132cm【分析】由折叠的性质可得BD=CD,即可求解【详解】解:
16、折叠三角形纸片ABC,使点B与点C重合,BD=CD,ABD的周长=AB+BD+AD=6+BD+AD,ACD的周长解析:2cm【分析】由折叠的性质可得BD=CD,即可求解【详解】解:折叠三角形纸片ABC,使点B与点C重合,BD=CD,ABD的周长=AB+BD+AD=6+BD+AD,ACD的周长=AC+AD+CD=4+CD+AD,ABD与ACD的周长之差=6-4=2cm,故答案为:2cm【点睛】本题考查了翻折变换,掌握折叠的性质是本题关键14【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得【详解】故答案为:【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化
17、为我们熟知的形式进行求解解析:【分析】按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得【详解】故答案为:【点睛】本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解15(-2,6)或(-2,0)【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案【详解】解:由点P(-2,3),PAy轴,PA=3,得在P点解析:(-2,6)或(-2,0)【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案【详解】解:由点P(-2,3),PAy轴,PA=3,得在P点上方的A点坐标
18、(-2,6),在P点下方的A点坐标(-2,0),故答案为:(-2,6)或(-2,0)【点睛】本题考查了点的坐标,掌握平行于y轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏16(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为13n,可求出A18的坐标,从而可得结论【详解】解:观察图形可知:A3(2,1),A6(5,2),A9(8,解析:(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为13n,可求出A18的坐标,从而可得结论【详解】解:观察图形可知:A3(2,1),A6(5,2),A9(8,3),2131,5132,813
19、3,A3n横坐标为13n,A18横坐标为:13617,A18(17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,A20(19,8)故答案为:(19,8)【点睛】本题主要考查坐标系中点、线段的平移规律在平面直角坐标系中,图形的平移与图形上某点的平移相同平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减三、解答题17(1);(2)【分析】(1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可;(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可【详解】解:解析:(1);(2)【分析】(1)根据算术平方根,立方根的求法结合实
20、数混合运算法则计算即可;(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可【详解】解:(1)原式;(2)原式【点睛】本题考查了实数的混合运算,算术平方根以及立方根的求法,绝对值等知识点,题目比较基础,熟练掌握基础知识点是关键18(1);(2)【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可【详解】(1)x26,移项得:,开方得:x,解得:;(2)(2x1)3=4,变形得:解析:(1);(2)【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可【详解】(1)x26,移项得:,开方得:x,解得:;(2)(2x1)3=4,
21、变形得:(2x1)3=8,开立方得:,2x=1,解得:【点睛】本题考查了立方根及平方根的应用,注意一个正数的平方根有两个,且互为相反数,一个数的立方根只有一个19同位角相等,两直线平行;两直线平行,内错角相等;已知;BCD+CDE180;等量代换;同旁内角互补,两直线平行【分析】根据平行线的性质与判定填空即可【详解】证明:AFECD解析:同位角相等,两直线平行;两直线平行,内错角相等;已知;BCD+CDE180;等量代换;同旁内角互补,两直线平行【分析】根据平行线的性质与判定填空即可【详解】证明:AFECDF(已知)EFCD (同位角相等,两直线平行)DEFCDE( 两直线平行,内错角相等)B
22、CD+DEF180(已知)BCD+CDE180( 等量代换)BCDE( 同旁内角互补,两直线平行)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;已知;BCD+CDE180;等量代换;同旁内角互补,两直线平行【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键20(1)A(3,4),B(5,2),C(2,0);(2)见解析,A1(3,0),B1(1,2),C1(4,4);(3)5【分析】(1)根据点的坐标的表示方法求解;(2)根据点平移的坐标解析:(1)A(3,4),B(5,2),C(2,0);(2)见解析,A1(3,0),B1(1,2),C1(4,4);(3)5
23、【分析】(1)根据点的坐标的表示方法求解;(2)根据点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算ABC的面积【详解】解:(1)由题意得:A(3,4),B(5,2),C(2,0);(2)如图,A1B1C1为所作,A1是经过点A(-3,)右平移6个单位长度,再向下平移4个单位长度得到的,A1(-3+6,4-4)即(3,0)同理得到B1(1,2),C1(4,4);(3)ABC的面积342341225【点睛】本题主要考查了平移作图,坐标与图形,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解21(1)7;-
24、7;(2)5;(3)13-【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求解析:(1)7;-7;(2)5;(3)13-【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求【详解】解:(1)78,的整数部分是7,小数部分是-7故答案为:7;-7(2)34,23,b2|a-b|+=|-3-2|+=5-+=5(3)23119+12,9+=x+y,其中x是整数,且0y1,x11,y-
25、11+9+-2,x-y11-(-2)13-【点睛】本题考查的是无理数的小数部分和整数部分及其运算估算无理数的整数部分是解题关键22(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解【详解】(1)阴影正方形的解析:(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解【详解】(1)阴影正方形的面积是33-4=5故答案为:5;(2)设阴影正方形的边长为x,则x2=5x=(-舍去)故答案为:
26、;(3)阴影正方形的边长介于2与3两个整数之间【点睛】本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法通过观察可知阴影部分的面积是5个小正方形的面积和会利用估算的方法比较无理数的大小23(1)PBQC;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【分析】(1)求出旋转10秒时,BPB和CQC的度数,设PB与QC交于O,过O作OEAB,根解析:(1)PBQC;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【分析】(1)求出旋转10秒时,BPB和CQC的度数,设PB与QC交于O,过O作OEAB,根据平行线的性质求得POE和QOE的度数,进而得结论;(2)
27、分三种情况:当0t15时,当15t30时,当30t45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间【详解】解:(1)如图1,当旋转时间30秒时,由已知得BPB1012120,CQC310=30,过O作OEAB,ABCD,ABOECD,POE180BPB60,QOECQC30,POQ90,PBQC,故答案为:PBQC;(2)当0t15时,如图,则BPB12t,CQC45+3t,ABCD,PBQC,BPBPECCQC,即12t45+3t,解得,t5; 当15t30时,如图,则APB12t180,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t18045+3t,
28、解得,t25;当30t45时,如图,则BPB12t360,CQC3t+45,ABCD,PBQC,BPBBEQCQC,即12t36045+3t,解得,t45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PBQC【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题24(1);(2);【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最解析:(1);(2);【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论;根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论【详解】解:(1)平分,;(2),EOC+COD=BOD+COD,EOC=BOD,;,EOC+COD=BOD+COD,EOC=BOD,【点睛】本题考查邻补角的计算,角的和差,角平分线的有关计算能正确识图,利用角的和差求得相应角的度数是解题关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100