1、一、解答题1如图1,在平面直角坐标系中,且满足,过作轴于(1)求的面积(2)若过作交轴于,且分别平分,如图2,求的度数(3)在轴上存在点使得和的面积相等,请直接写出点坐标2如图1,已知直线CDEF,点A,B分别在直线CD与EF上P为两平行线间一点(1)若DAP40,FBP70,则APB (2)猜想DAP,FBP,APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:如图2,AP1,BP1分别平分DAP,FBP,请你写出P与P1的数量关系,并说明理由;如图3,AP2,BP2分别平分CAP,EBP,若APB,求AP2B(用含的代数式表示)3如图,点A、B分别在直线MN、GH上,点O在直线M
2、N、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值4如图1,点在直线上,点在直线上,点在,之间,且满足(1)证明:;(2)如图2,若,点在线段上,连接,且,试判断与的数量关系,并说明理由;(3)如图3,若(为大于等于的整数),点在线段上,连接,若,则_5直线ABCD,点P为平面内一点,连接AP,CP(1)如图,点P在直线AB,CD之间,当BAP60,DCP20时,求APC的度数;(2)如图,点P在直线AB,CD之间,BAP与DCP的角平分线相交于K,写出AKC与AP
3、C之间的数量关系,并说明理由;(3)如图,点P在直线CD下方,当BAKBAP,DCKDCP时,写出AKC与APC之间的数量关系,并说明理由6如图1,已ABCD,CA(1)求证:ADBC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究BAE,CDE,E之间的数量关系,并证明(3)如图3,若C90,且点E在线段BC上,DF平分EDC,射线DF在EDC的内部,且交BC于点M,交AE延长线于点F,AED+AEC180,直接写出AED与FDC的数量关系: 点P在射线DA上,且满足DEP2F,DEAPEADEB,补全图形后,求EPD的度数7规律探究,观察下列等式:第1个等式:第2个等
4、式:第3个等式:第4个等式:请回答下列问题:(1)按以上规律写出第5个等式:= _ = _ (2)用含n的式子表示第n个等式:= _ = _(n为正整数)(3)求8给定一个十进制下的自然数,对于每个数位上的数,求出它除以的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数的“模二数”,记为.如.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定:与相加得;与相加得与相加得,并向左边一位进.如的“模二数”相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)的值为_ ,的值为_ (2)如果两个自然数的和的“模二数”与它们的
5、“模二数”的和相等,则称这两个数“模二相加不变”.如,因为,所以,即与满足“模二相加不变”.判断这三个数中哪些与“模二相加不变”,并说明理由;与“模二相加不变”的两位数有_个9请观察下列等式,找出规律并回答以下问题,(1)按照这个规律写下去,第5个等式是:_;第n个等式是:_(2)计算:若a为最小的正整数,求:10规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222,(-3)(-3)(-3)(-3)等类比有理数的乘方,我们把222记作2,读作“2的圈3次方”,(-3)(-3)(-3)(-3)记作(-3),读作“-3的圈4次方”,一般地,把 (a0)记作a,读作“a的圈n次方”(
6、初步探究)(1)直接写出计算结果:2=_,()=_;(2)关于除方,下列说法错误的是_A任何非零数的圈2次方都等于1;B对于任何正整数n,1=1;C3=4;D负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式(-3)=_;5=_;(-)=_(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于_;(3)算一算:()(2)()11对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数
7、为“梦幻数”,将一个“梦幻数”任意两个数位上的数字对调后可以得到三个不同的新三数,把这三个新三位数的和与111的商记为K(n),例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为,所以(1)计算:和;(2)若x是“梦幻数”,说明:等于x的各数位上的数字之和;(3)若x,y都是“梦幻数”,且,猜想:_,并说明你猜想的正确性12已知,在计算:的过程中,如果存在正整数,使得各个数位均不产生进位,那么称这样的正整数为“本位数”例如:2和30都是“本位数”,因为没有进位,没有进位;15和91都不是“本位数”,因为,个位产生进位
8、,十位产生进位则根据上面给出的材料:(1)下列数中,如果是“本位数”请在后面的括号内打“”,如果不是“本位数”请在后面的括号内画“”106( );111( );400( );2015( )(2)在所有的四位数中,最大的“本位数”是 ,最小的“本位数”是 (3)在所有三位数中,“本位数”一共有多少个?13如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CBy轴交y轴负半轴于B(0,b),且|a3|+(b+4)20,S四边形AOBC16(1)求点C的坐标(2)如图2,设D为线段OB上一动点,当ADAC时,ODA的角平分线与CAE的角平分线的反向延长线交于点P,求AP
9、D的度数;(点E在x轴的正半轴)(3)如图3,当点D在线段OB上运动时,作DMAD交BC于M点,BMD、DAO的平分线交于N点,则点D在运动过程中,N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由14如图,已知/,点是射线上一动点(与点不重合),分别平分和,分别交射线于点(1)当时,的度数是_;(2)当,求的度数(用的代数式表示);(3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律(4)当点运动到使时,请直接写出的度数15如图,在平面直角坐标系中,点,将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上
10、,A,B的对应点分别为,连接交y轴于点C,交x轴于点D(1)线段可以由线段AB经过怎样的平移得到?并写出,的坐标;(2)求四边形的面积;(3)P为y轴上的一动点(不与点C重合),请探究与的数量关系,给出结论并说明理由16如图,数轴上两点A、B对应的数分别是1,1,点P是线段AB上一动点,给出如下定义:如果在数轴上存在动点Q,满足|PQ|2,那么我们把这样的点Q表示的数称为连动数,特别地,当点Q表示的数是整数时我们称为连动整数(1)在2.5,0,2,3.5四个数中,连动数有;(直接写出结果)(2)若k使得方程组中的x,y均为连动数,求k所有可能的取值;(3)若关于x的不等式组的解集中恰好有4个连
11、动整数,求这4个连动整数的值及a的取值范围17如图,点A(1,n),B(n,1),我们定义:将点A向下平移1个单位,再向右平移1个单位,同时点B向上平移1个单位,再向左平移1个单位称为一次操作,此时平移后的两点记为A1,B1,t次操作后两点记为At,Bt(1)直接写出A1,B1,At,Bt的坐标(用含n、t的式子表示);(2)以下判断正确的是A经过n次操作,点A,点B位置互换B经过(n1)次操作,点A,点B位置互换C经过2n次操作,点A,点B位置互换D不管几次操作,点A,点B位置都不可能互换(3)t为何值时,At,B两点位置距离最近?18如图1,以直角的直角顶点为原点,以,所在直线为轴和轴建立
12、平面直角坐标系,点,并且满足(1)直接写出点,点的坐标;(2)如图1,坐标轴上有两动点,同时出发,点从点出发沿轴负方向以每秒2个单位长度的速度匀速运动,点从点出发沿轴正方向以每秒个单位长度的速度匀速运动,当点到达点整个运动随之结束;线段的中点的坐标是,设运动时间为秒是否存在,使得与的面积相等?若存在,求出的值;若不存在,说明理由;(3)如图2,在(2)的条件下,若,点是第二象限中一点,并且平分,点是线段上一动点,连接交于点,当点在上运动的过程中,探究,之间的数量关系,直接写出结论19先阅读下面材料,再完成任务:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如
13、以下问题:已知实数,满足,求和的值本题常规思路是将两式联立组成方程组,解得,的值再代入欲求值的代数式得到答案,常规思路运算量比较大其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由可得,由2可得,这样的解题思想就是通常所说的“整体思想”解决问题:(1)已知二元一次方程组,则_,_;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记木共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数,定义新运算:,其中,是常数,等式右边是通常的加法和乘法运算已知,那么_20判断下面方程组
14、的解法是否正确,如果全部正确,判断即可;如果有错误,请写出正确的解题过程解:2-3,得,解得,把代入方程,得,解得原方程组的解为21每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)ab产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元(1) 求a、b的值;(2) 若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3) 在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为
15、该公司设计一 种最省钱的购买方案22在平面直角坐标系中,点,点,点(1)的面积为_;(2)已知点,那么四边形的面积为_(3)奥地利数学家皮克发现了一类快速求解格点多边形的方法,被称为皮克定理:如果用m表示格点多边形内的格点数,n表示格点多边形边上的格点数,那么格点多边形的面积S和m与n之间满足一种数量关系例如刚刚求解的几个多边形面积中,我们可以得到如表中信息:形内格点数m边界格点数n格点多边形面积S611四边形811五边形208根据上述的例子,猜测皮克公式为_(用m,n表示),试计算图中六边形的面积为_(本大题无需写出解题过程,写出正确答案即可)23阅读材料:形如的不等式,我们就称之为双连不等
16、式.求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得,然后同时除以2,得解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式;(3)已知,求的整数值24在平面直角坐标系xOy中,已知点M(a,b)如果存在点N(a,b),满足a|ab|,b|ab|,则称点N为点M的“控变点”(1)点A(1,2)的“控变点”B的坐标为 ;(2)已知点C(m,1)的“控变点”D的坐标为(4,n),求m,n的值;(3)长方形EFGH的顶点坐标分别为(1,1),(5,1),(5,4),(1,4)如果点P(x
17、,2x)的“控变点”Q在长方形EFGH的内部,直接写出x的取值范围25我们把关于x的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”(1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由;(2)若关于x的组合是“有缘组合”,求a的取值范围;(3)若关于x的组合是“无缘组合”;求a的取值范围26在平面直角坐标系中,点,的坐标分别为,且,满足方程为二元一次方程(1)求,的坐标(2)若点为轴正半轴上的一个动点如图1,当时,与的平分
18、线交于点,求的度数;如图2,连接,交轴于点若成立设动点的坐标为,求的取值范围27已知关于x、y的二元一次方程(1)若方程组的解x、y满足,求a的取值范围;(2)求代数式的值28在平面直角坐标系中,点A,B的坐标分别为(1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使SPAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由;(3)点P是直线BD上一个动点,连接PC、PO ,当点P在直线B
19、D上运动时,请直接写出OPC与PCD、POB的数量关系29对,定义一种新的运算,规定:(其中)(1)若已知,则_(2)已知,求,的值;(3)在(2)问的基础上,若关于正数的不等式组恰好有2个整数解,求的取值范围30学校美术组要去商店购买铅笔和橡皮,若购买60支铅笔和30块橡皮,则需按零售价购买,共支付30元;若购买90支铅笔和60块橡皮,则可按批发价购买,共支付40.5元已知每支铅笔的批发价比零售价低0.05元,每块橡皮的批发价比零售价低0.10元(1)求每支铅笔和每块橡皮的批发价各是多少元?(2)小亮同学用4元钱在这家商店按零售价买同样的铅笔和橡皮(两样都要买,4元钱恰好用完),共有哪几种购
20、买方案?【参考答案】*试卷处理标记,请不要删除一、解答题1(1)4;(2);(2)或【分析】(1)根据非负数的性质易得,然后根据三角形面积公式计算;(2)过作,根据平行线性质得,且,所以;然后把 代入计算即可;(3)分类讨论:设,当在轴正半轴上时,过作轴,轴,轴,利用可得到关于的方程,再解方程求出;当在轴负半轴上时,运用同样方法可计算出【详解】解:(1),的面积;(2)解:轴,又,过作,如图,分别平分,即:,;(3)或解:当在轴正半轴上时,如图,设,过作轴,轴,轴,解得, 当在轴负半轴上时,如图,解得,综上所述:或【点睛】本题考查了平行线的判定与性质:两直线平行,内错角相等也考查了非负数的性质
21、、坐标与图形性质以及三角形面积公式构造矩形求三角形面积是解题关键2(1)110;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B=【分析】(1)过P作PMCD,根据两直线平行,内错角相等可得APM=DAP,再根据平行公理求出CDEF然后根据两直线平行,内错角相等可得MPB=FBP,最后根据APM+MPB=DAP+FBP等量代换即可得证;(2)结论:APB=DAP+FBP (3)根据(2)的规律和角平分线定义解答; 根据的规律可得APB=DAP+FBP,AP2B=CAP2+EBP2,然后根据角平分线的定义和平角等于180列式整理即可得解【详解】(1)证明:过
22、P作PMCD, APM=DAP(两直线平行,内错角相等),CDEF(已知), PMCD(平行于同一条直线的两条直线互相平行), MPB=FBP(两直线平行,内错角相等), APM+MPB=DAP+FBP(等式性质) 即APB=DAP+FBP=40+70=110 (2)结论:APB=DAP+FBP 理由:见(1)中证明 (3)结论:P=2P1; 理由:由(2)可知:P=DAP+FBP,P1=DAP1+FBP1,DAP=2DAP1,FBP=2FBP1, P=2P1 由得APB=DAP+FBP,AP2B=CAP2+EBP2, AP2、BP2分别平分CAP、EBP, CAP2=CAP,EBP2=EBP
23、, AP2B=CAP+EBP, = (180-DAP)+ (180-FBP), =180- (DAP+FBP), =180- APB, =180- 【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线3(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设B
24、F交MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行
25、线、再利用平行线性质进行求解是解答本题的关键4(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB,根据已知证明MAB+SBA=180,即可得证;(2)作CFST,设CBT=,表示出CAN,ACF,BCF,根据ADBC,得到DAC=120,求出CAE即可得到结论;(3)作CFST,设CBT=,得到CBT=BCF=,分别表示出CAN和CAE,即可得到比值【详解】解:(1)如图,连接,(2),理由:作,则 如图,设,则,即(3)作,则 如图,设,则,故答案为【点睛】本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式5(1)80;(2)AKCAPC,理由见解析;(3)
26、AKCAPC,理由见解析【分析】(1)先过P作PEAB,根据平行线的性质即可得到APEBAP,CPEDCP,再根据APCAPE+CPEBAP+DCP进行计算即可;(2)过K作KEAB,根据KEABCD,可得AKEBAK,CKEDCK,进而得到AKCAKE+CKEBAK+DCK,同理可得,APCBAP+DCP,再根据角平分线的定义,得出BAK+DCKBAP+DCP(BAP+DCP)APC,进而得到AKCAPC;(3)过K作KEAB,根据KEABCD,可得BAKAKE,DCKCKE,进而得到AKCBAKDCK,同理可得,APCBAPDCP,再根据已知得出BAKDCKBAPDCPAPC,进而得到BA
27、KDCKAPC【详解】(1)如图1,过P作PEAB,ABCD,PEABCD,APEBAP,CPEDCP,APCAPE+CPEBAP+DCP60+2080;(2)AKCAPC理由:如图2,过K作KEAB,ABCD,KEABCD,AKEBAK,CKEDCK,AKCAKE+CKEBAK+DCK,过P作PFAB,同理可得,APCBAP+DCP,BAP与DCP的角平分线相交于点K,BAK+DCKBAP+DCP(BAP+DCP)APC,AKCAPC;(3)AKCAPC理由:如图3,过K作KEAB,ABCD,KEABCD,BAKAKE,DCKCKE,AKCAKECKEBAKDCK,过P作PFAB,同理可得,
28、APCBAPDCP,BAKBAP,DCKDCP,BAKDCKBAPDCP(BAPDCP)APC,AKCAPC【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算6(1)见解析;(2)BAE+CDE=AED,证明见解析;(3)AED-FDC=45,理由见解析;50【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EFAB,根据平行线的性质得ABCDEF,然后由两直线平行内错角相等可得结论;(3)根据AED+AEC=180,AED+DEC+AEB=180,DF平分EDC,可得出2AED+(90-2FDC)=180,即可导出角的关系;先根据AED=F+F
29、DE,AED-FDC=45得出DEP=2F=90,再根据DEA-PEA=DEB,求出AED=50,即可得出EPD的度数【详解】解:(1)证明:ABCD,A+D=180,C=A,C+D=180,ADBC;(2)BAE+CDE=AED,理由如下:如图2,过点E作EFAB,ABCDABCDEFBAE=AEF,CDE=DEF即FEA+FED=CDE+BAEBAE+CDE=AED;(3)AED-FDC=45;AED+AEC=180,AED+DEC+AEB=180,AEC=DEC+AEB,AED=AEB,DF平分EDCDEC=2FDCDEC=90-2FDC,2AED+(90-2FDC)=180,AED-F
30、DC=45,故答案为:AED-FDC=45;如图3,AED=F+FDE,AED-FDC=45,F=45,DEP=2F=90,DEA-PEA=DEB=DEA,PEA=AED,DEP=PEA+AED=AED=90,AED=70,AED+AEC=180,DEC+2AED=180,DEC=40,ADBC,ADE=DEC=40,在PDE中,EPD=180-DEP-AED=50,即EPD=50【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键7(1);(2);(3).【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案;
31、(2)根据前4个等式归纳类推出一般规律即可;(3)利用题(2)的结论,先写出中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.【详解】(1)观察前4个等式的分母可知,第5个式子的分母为则第5个式子为:故应填:;(2)第1个等式的分母为:第2个等式的分母为:第3个等式的分母为:第4个等式的分母为:归纳类推得,第n个等式的分母为:则第n个等式为:(n为正整数)故应填:;(3)由(2)的结论得:则.【点睛】本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.8(1)1011,1101;(2)12,65,97,见解析,38【分析】(1) 根据“模二数”的定义
32、计算即可;(2) 根据“模二数”和模二相加不变”的定义,分别计算和12+23,65+23,97+23的值,即可得出答案设两位数的十位数字为a,个位数字为b,根据a、b的奇偶性和“模二数”和模二相加不变”的定义进行讨论,从而得出与“模二相加不变”的两位数的个数【详解】解: (1) ,故答案为:, ,与满足“模二相加不变”.,与不满足“模二相加不变”.,与满足“模二相加不变”当此两位数小于77时,设两位数的十位数字为a,个位数字为b,;当a为偶数,b为偶数时,与满足“模二相加不变”有12个(28、48、68不符合)当a为偶数,b为奇数时,与不满足“模二相加不变”.但27、47、67、29、49、6
33、9符合共6个当a为奇数,b为奇数时,与不满足“模二相加不变”.但17、37、57、19、39、59也不符合当a为奇数,b为偶数时,与满足“模二相加不变”有16个,(18、38、58不符合) 当此两位数大于等于77时,符合共有4个综上所述共有12+6+16+4=38故答案为:38【点睛】本题考查新定义,数字的变化类,认真观察、仔细思考,分类讨论的数学思想是解决这类问题的方法能够理解定义是解题的关键9(1),;(2);【分析】(1)根据规律可得第5个算式;根据规律可得第n个算式;(2)根据运算规律可得结果利用非负数的性质求出与的值,代入原式后拆项变形,抵消即可得到结果【详解】(1)根据规律得:第5
34、个等式是,第n个等式是;(2),;为最小的正整数,原式,【点睛】本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键10初步探究:(1),8;(2)C;深入思考:(1),;(2);(3)-5.【分析】初步探究:(1)根据除方运算的定义即可得出答案;(2)根据除方运算的定义逐一判断即可得出答案;深入思考:(1)根据除方运算的定义即可得出答案;(2)根据(1)即可总结出(2)中的规律;(3)先按照除方的定义将每个数的圈n次方算出来,再根据有理数的混合运算法则即可得出答案.【详解】解:初步探究:(1)2=222=()=(2)A:任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项
35、A错误;B:因为多少个1相除都是1,所以对于任何正整数n,1都等于1,故选项B错误;C:3=3333=,4=444=,34,故选项C正确;D:负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D错误;故答案选择:C.深入思考:(1)(-3)=(-3)(-3)(-3) (-3)=5=555555=(-)=(2)a=aaaa=(3)原式=-5【点睛】本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.11(1);(2)见解析;(3)【分析】(1)根据的定义,可以直接计算得出;(2)设,得
36、到新的三个数分别是:,这三个新三位数的和为,可以得到:;(3)根据(2)中的结论,猜想:【详解】解:(1)已知,所以新的三个数分别是:,这三个新三位数的和为,;同样,所以新的三个数分别是:,这三个新三位数的和为,(2)设,得到新的三个数分别是:,这三个新三位数的和为,可得到:,即等于x的各数位上的数字之和(3)设,由(2)的结论可以得到:,根据三位数的特点,可知必然有:,故答案是:【点睛】此题考查了多位数的数字特征,每个数字是10以内的自然数且不为0,解题的关键是:结合新定义,可以计算出问题的解,注意把握每个数字都会出现一次的特点,区别数字与多为数的不同12(1),;(2)3332;1000;
37、(3)(个)【分析】(1)根据“本位数”的定义即可判断;(2)要想保证不进位,千位、百位、十位最大只能是3,个位最大只能是2,故最大的四位“本位数”是3332;千位最小为1,百位、十位、个位最小为0,故最小的“本位数”是1000;(3)要想构成“本位数”,百位可以为1,2,3,十位可以为0,1,2,3,个位可以为0,1,2,所有的三位数中,“本位数”一共有(个)【详解】解:(1)有进位;没有进位;有进位;有进位;故答案为:,(2)要想保证不进位,千位、百位、十位最大只能是3,个位最大只能是2,故最大的四位“本位数”是3332;千位最小为1,百位、十位、个位最小为0,故最小的“本位数”是1000
38、,故答案为:3332,1000(3)要想构成“本位数”,百位可以为1,2,3,十位可以为0,1,2,3,个位可以为0,1,2,所有的三位数中,“本位数”一共有(个)【点睛】本题考查了新定义计算题,准确理解新定义的内涵是解题的关键13(1) C(5,4);(2)90;(3)见解析.【详解】分析:(1)利用非负数的和为零,各项分别为零,求出a,b即可;(2)用同角的余角相等和角平分线的意义即可;(3)利用角平分线的意义和互余两角的关系简单计算证明即可详解:(1)(a3)2+|b+4|=0,a3=0,b+4=0,a=3,b=4,A(3,0),B(0,4),OA=3,OB=4,S四边形AOBC=160
39、.5(OA+BC)OB=16,0.5(3+BC)4=16,BC=5,C是第四象限一点,CBy轴,C(5,4);(2)如图,延长CA,AF是CAE的角平分线,CAF=0.5CAE,CAE=OAG,CAF=0.5OAG,ADAC,DAO+OAG=PAD+PAG=90,AOD=90,DAO+ADO=90,ADO=OAG,CAF=0.5ADO,DP是ODA的角平分线,ADO=2ADP,CAF=ADP,CAF=PAG,PAG=ADP,APD=180(ADP+PAD)=180(PAG+PAD)=18090=90即:APD=90(3)不变,ANM=45理由:如图,AOD=90,ADO+DAO=90,DMAD
40、,ADO+BDM=90,DAO=BDM,NA是OAD的平分线,DAN=0.5DAO=0.5BDM,CBy轴,BDM+BMD=90,DAN=0.5(90BMD),MN是BMD的角平分线,DMN=0.5BMD,DAN+DMN=0.5(90BMD)+0.5BMD=45在DAM中,ADM=90,DAM+DMA=90,在AMN中,ANM=180(NAM+NMA)=180(DAN+DAM+DMN+DMA)=180(DAN+DMN)+(DAM+DMA) =180(45+90)=45,D点在运动过程中,N的大小不变,求出其值为45点睛:此题是四边形综合题,主要考查了非负数的性质,四边形面积的计算方法,角平分线的意义,解本题的关键是用整体的思想解决问题,也是本题的难点.14(1)120;(2)90-x;(3)不变,;(4)45【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得ABN=180-x,根据角平分线的定义知ABP=2CBP、PBN=2DBP,可得2CBP+2DBP=180-x,即CBD=CBP+DBP=90-x;(3)由AMBN得APB=PBN、ADB=DB
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100