ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:693.01KB ,
资源ID:4684053      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4684053.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(《概率论与数理统计》习题答案(复旦大学出版社)第四章.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《概率论与数理统计》习题答案(复旦大学出版社)第四章.doc

1、习题四 1.设随机变量X的分布律为 X -1 0 1 2 P 1/8 1/2 1/8 1/4 求E(X),E(X2),E(2X+3). 【解】(1) (2) (3) 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 【解】设任取出的5个产品中的次品数为X,则X的分布律为 X 0 1 2 3 4 5 P 故

2、 3.设随机变量X的分布律为 X -1 0 1 P p1 p2 p3 且已知E(X)=0.1,E(X2)=0.9,求P1,P2,P3. 【解】因……①, 又……②, ……③ 由①②③联立解得 4.袋中有N只球,其中的白球数X为一随机变量,已知E(X)=n,问从袋中任取1球为白球的概率是多少? 【解】记A={从袋中任取1球为白球},则 5.设随机变量X

3、的概率密度为 f(x)= 求E(X),D(X). 【解】 故 6.设随机变量X,Y,Z相互独立,且E(X)=5,E(Y)=11,E(Z)=8,求下列随机变量的数学期望. (1) U=2X+3Y+1; (2) V=YZ -4X. 【解】(1) (2) 7.设随机变量X,Y相互独立,且E(X)=E(Y)=3,D(X)=12,D(Y)=16,求E(3X -2Y),D(2X -3Y). 【解】(1) (2) 8.设随机变量(X,

4、Y)的概率密度为 f(x,y)= 试确定常数k,并求E(XY). 【解】因故k=2 . 9.设X,Y是相互独立的随机变量,其概率密度分别为 fX(x)= fY(y)= 求E(XY). 【解】方法一:先求X与Y的均值 由X与Y的独立性,得 方法二:利用随机变量函数的均值公式.因X与Y独立,故联合密度为 于是 10.设随机变量X,Y的概率密度分别为 fX(x)= fY(y)= 求(1) E(X+Y);(2) E(2X -3Y2). 【解】 从而(1)

5、2) 11.设随机变量X的概率密度为 f(x)= 求(1) 系数c;(2) E(X);(3) D(X). 【解】(1) 由得. (2) (3) 故 12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X,求E(X)和D(X). 【解】设随机变量X表示在取得合格品以前已取出的废品数,则X的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知 于是,得到X

6、的概率分布表如下: X 0 1 2 3 P 0.750 0.204 0.041 0.005 由此可得 13.一工厂生产某种设备的寿命X(以年计)服从指数分布,概率密度为 f(x)= 为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y只有两个值:100元和 -200元 故 (元). 14.设X1,X2,…,Xn是相互独立的随机变量,且有E(Xi)=μ,D(Xi

7、σ2,i=1,2,…,n,记 ,S2=. (1) 验证=μ, =; (2) 验证S2=; (3) 验证E(S2)=σ2. 【证】(1) (2) 因 故. (3) 因,故 同理因,故. 从而 15.对随机变量X和Y,已知D(X)=2,D(Y)=3,Cov(X,Y)= -1, 计算:Cov(3X -2Y+1,X+4Y -3). 【解】 (因常数与任一随机变量独立,故Cov(X,3)

8、Cov(Y,3)=0,其余类似). 16.设二维随机变量(X,Y)的概率密度为 f(x,y)= 试验证X和Y是不相关的,但X和Y不是相互独立的. 【解】设. 同理E(Y)=0. 而 , 由此得,故X与Y不相关. 下面讨论独立性,当|x|≤1时, 当|y|≤1时,. 显然 故X和Y不是相互独立的. 17.设随机变量(X,Y)的分布律为 X Y -1 0 1 -1 0 1 1/8

9、 1/8 1/8 1/8 0 1/8 1/8 1/8 1/8 验证X和Y是不相关的,但X和Y不是相互独立的. 【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律易求得X,Y及XY的分布律,其分布律如下表 18 X -1 0 1 P Y -1 0 1 P XY -1 0 1 P 由期望定义易得E(X)=E(Y)=E(XY)=0.

10、 从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0, 即X与Y的相关系数为0,从而X和Y是不相关的. 又 从而X与Y不是相互独立的. 18.设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov(X,Y),ρXY. 【解】如图,SD=,故(X,Y)的概率密度为 题18图 从而 同理 而 所以 . 从而 19.设(X,Y)的概率密度为 f(x,y)= 求协方差Cov(X,Y)和相关系数ρXY. 【解】 从而 同理

11、 又 故 20.已知二维随机变量(X,Y)的协方差矩阵为,试求Z1=X -2Y和Z2=2X -Y的相关系数. 【解】由已知知:D(X)=1,D(Y)=4,Cov(X,Y)=1. 从而 故 21.对于两个随机变量V,W,若E(V2),E(W2)存在,证明: [E(VW)]2≤E(V2)E(W2). 这一不等式称为柯西许瓦兹(Couchy -Schwarz)不等式. 【证】令 显然

12、 可见此关于t的二次式非负,故其判别式Δ≤0, 即 故 22.假设一设备开机后无故障工作的时间X服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y的分布函数F(y). 【解】设Y表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X~E(λ),E(X)==5. 依题意Y=min(X,2). 对于y<0,f(y)=P{Y≤y}=0. 对于y≥2,F(y)=P(X≤y)=1. 对于0≤y<2,当x≥0时,在(0,x)内无故障的概率分

13、布为 P{X≤x}=1 -e -λx,所以 F(y)=P{Y≤y}=P{min(X,2)≤y}=P{X≤y}=1 -e -y/5. 23.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放乙箱后,求:(1)乙箱中次品件数Z的数学期望;(2)从乙箱中任取一件产品是次品的概率. 【解】(1) Z的可能取值为0,1,2,3,Z的概率分布为 , Z=k 0 1 2 3 Pk 因此, (2) 设A表示事件“从乙箱中任取出一件产品是次品”,根据全概率公式有

14、 24.假设由自动线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格品.销售每件合格品获利,销售每件不合格品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系 T= 问:平均直径μ取何值时,销售一个零件的平均利润最大? 【解】 故 得  两边取对数有 解得 (毫米) 由此可得,当u=10.9毫米时,平均利润最大. 25.设随机变量X的概率密度为 f(x)= 对X独立地重

15、复观察4次,用Y表示观察值大于π/3的次数,求Y2的数学期望. (2002研考) 【解】令 则.因为 及, 所以 , 从而 26.两台同样的自动记录仪,每台无故障工作的时间Ti(i=1,2)服从参数为5的指数分布,首先开动其中一台,当其发生故障时停用而另一台自动开启.试求两台记录仪无故障工作的总时间T=T1+T2的概率密度fT(t),数学期望E(T)及方差D(T). 【解】由题意知: 因T1,T2独立,所以fT(t)=f1(t)*f2(t). 当t<0时,fT(t)=0; 当t≥0时,利用卷积公式得 故得 由于Ti ~E(5),故知E(T

16、i)=,D(Ti)=(i=1,2) 因此,有E(T)=E(T1+T2)=. 又因T1,T2独立,所以D(T)=D(T1+T2)=. 27.设两个随机变量X,Y相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X -Y|的方差. 【解】设Z=X -Y,由于 且X和Y相互独立,故Z~N(0,1). 因 而 , 所以 . 28.某流水生产线上每个产品不合格的概率为p(0

17、即停机检修.设开机后第一次停机时已生产了的产品个数为X,求E(X)和D(X). 【解】记q=1 -p,X的概率分布为P{X=i}=qi -1p,i=1,2,…, 故 又 所以 题29图 29.设随机变量X和Y的联合分布在点(0,1),(1,0)及(1,1)为顶点的三角形区域上服从均匀分布.(如图),试求随机变量U=X+Y的方差. 【解】D(U)=D(X+Y)=D(X)+D(Y)+2Cov(X,Y) =D(X)+D(Y)+2[E(XY) -E(X)·E(Y)]. 由条件知X和Y的联合密度为 从而

18、 因此 同理可得 于是 30.设随机变量U在区间[ -2,2]上服从均匀分布,随机变量 X= Y= 试求(1)X和Y的联合概率分布;(2)D(X+Y). 【解】(1) 为求X和Y的联合概率分布,就要计算(X,Y)的4个可能取值( -1, -1),( -1,1),(1, -1)及(1,1)的概率. P{x= -1,Y= -1}=P{U≤ -1,U≤1} P{X= -1,Y=1}=P{U≤ -1,U>1}=P{}=0, P{X=1,Y= -1}=P{U>

19、 -1,U≤1} . 故得X与Y的联合概率分布为 . (2) 因,而X+Y及(X+Y)2的概率分布相应为 , . 从而 所以 31.设随机变量X的概率密度为f(x)=,( -∞

20、中的子区间(0,+∞)上给出任意点x0,则有 所以 故由 得出X与|X|不相互独立. 32.已知随机变量X和Y分别服从正态分布N(1,32)和N(0,42),且X与Y的相关系数ρXY= -1/2,设Z=. (1) 求Z的数学期望E(Z)和方差D(Z); (2) 求X与Z的相关系数ρXZ; (3) 问X与Z是否相互独立,为什么? 【解】(1) 而 所以 (2) 因 所以

21、 (3) 由,得X与Z不相关.又因,所以X与Z也相互独立. 33.将一枚硬币重复掷n次,以X和Y表示正面向上和反面向上的次数.试求X和Y的相关系数. 【解】由条件知X+Y=n,则有D(X+Y)=D(n)=0. 再由X~B(n,p),Y~B(n,q),且p=q=, 从而有 所以 故= -1. 34.设随机变量X和Y的联合概率分布为 Y X -1 0 1 0 1 0.07 0.

22、18 0.15 0.08 0.32 0.20 试求X和Y的相关系数ρ. 【解】由已知知E(X)=0.6,E(Y)=0.2,而XY的概率分布为 YX -1 0 1 P 0.08 0.72 0.2 所以E(XY)= -0.08+0.2=0.12 Cov(X,Y)=E(XY) -E(X)·E(Y)=0.12 -0.6×0.2=0 从而 =0 35.对于任意两事件A和B,0

23、1) 事件A和B独立的充分必要条件是ρ=0; (2) |ρ|≤1. 【证】(1)由ρ的定义知,ρ=0当且仅当P(AB) -P(A)·P(B)=0. 而这恰好是两事件A、B独立的定义,即ρ=0是A和B独立的充分必要条件. (2) 引入随机变量X与Y为 由条件知,X和Y都服从0 -1分布,即 从而有E(X)=P(A),E(Y)=P(B), D(X)=P(A)·P(),D(Y)=P(B)·P(), Cov(X,Y)=P(AB) -P(A)·P(B) 所以,事件A和B的相关系数就是随机变量X和Y的相关系数.于是由二元随机变量相关系数的基本性质可得|ρ|≤1.

24、 36. 设随机变量X的概率密度为 fX(x)= 令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数,求: (1) Y的概率密度fY(y); (2) Cov(X,Y); (3). 解: (1) Y的分布函数为 . 当y≤0时, ,; 当0<y<1时, , ; 当1≤y<4时, ; 当y≥4时,,. 故Y的概率密度为 (2) , , , 故 Cov(X,Y) =. (3) .

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服