ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:1.40MB ,
资源ID:4675022      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4675022.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(人教版高数选修2-2第3讲:函数的单调性与导数(教师版).doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教版高数选修2-2第3讲:函数的单调性与导数(教师版).doc

1、导数与函数的单调性、极值_ 一、函数的单调性与导数:1 函数的导数与函数的单调性的关系: 我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数从函数的图像可以看到:y=f(x)=x24x+3切线的斜率f(x)(2,+)增函数正0(,2)减函数负0在区间(2,)内,切线的斜率为正,函数y=f(x)的值随着x的增大而增大,即0时,函数y=f(x) 在区间(2,)内为增函数;在区间(,2)内,切线的斜率为负,函数y=f(x)的值随着x的增大而减小,即0时,函数y=f(x) 在区间(,2)内为减函数定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内0,那么函数y=f

2、(x) 在为这个区间内的增函数;如果在这个区间内0,那么函数y=f(x) 在为这个区间内的减函数2利用导数确定函数的单调性的步骤:(1) 确定函数f(x)的定义域;(2) 求出函数的导数;(3) 解不等式f (x)0,得函数的单调递增区间;解不等式f (x)0,得函数的单调递减区间 类型一:函数的单调性与导数:例1确定函数f(x)=x22x+4在哪个区间内是增函数,哪个区间内是减函数。解:f(x)=(x22x+4)=2x2令2x20,解得x1当x(1,+)时,f(x)0,f(x)是增函数令2x20,解得x1当x(,1)时,f(x)0,f(x)是减函数 例2确定函数f(x)=2x36x2+7在哪

3、个区间内是增函数,哪个区间内是减函数解:f(x)=(2x36x2+7)=6x212x令6x212x0,解得x2或x0当x(,0)时,f(x)0,f(x)是增函数当x(2,+)时,f(x)0,f(x)是增函数令6x212x0,解得0x2当x(0,2)时,f(x)0,f(x)是减函数 例3证明函数f(x)=在(0,+)上是减函数证法一:(用以前学的方法证)证法二:(用导数方法证)f(x)=( )=(1)x2=,x0,x20,0 f(x)0,f(x)= 在(0,+)上是减函数。点评:比较一下两种方法,用求导证明是不是更简捷一些如果是更复杂一些的函数,用导数的符号判别函数的增减性更能显示出它的优越性。

4、例4求函数y=x2(1x)3的单调区间解:y=x2(1x)3=2x(1x)3+x23(1x)2(1)=x(1x)22(1x)3x=x(1x)2(25x)令x(1x)2(25x)0,解得0x y=x2(1x)3的单调增区间是(0,)令x(1x)2(25x)0,解得x0或x且x1为拐点,y=x2(1x)3的单调减区间是(,0),(,+)例5当x0时,证明不等式:1+2xe2x分析:假设令f(x)=e2x12xf(0)=e010=0, 如果能够证明f(x)在(0,+)上是增函数,那么f(x)0,则不等式就可以证明。证明:令f(x)=e2x12x f(x)=2e2x2=2(e2x1)x0,e2xe0=

5、1,2(e2x1)0, 即f(x)0f(x)=e2x12x在(0,+)上是增函数。f(0)=e010=0当x0时,f(x)f(0)=0,即e2x12x01+2xe2x点评:所以以后要证明不等式时,可以利用函数的单调性进行证明,把特殊点找出来使函数的值为0。例6已知函数y=x+,试讨论出此函数的单调区间。解:y=(x+)=11x2=令0 解得x1或x1y=x+的单调增区间是(,1)和(1,+)令0,解得1x0或0x1y=x+的单调减区间是(1,0)和(0,1)四、课堂练习1确定下列函数的单调区间(1)y=x39x2+24x (2)y=xx3(1)解:y=(x39x2+24x)=3x218x+24

6、=3(x2)(x4)令3(x2)(x4)0,解得x4或x2y=x39x2+24x的单调增区间是(4,+)和(,2)令3(x2)(x4)0,解得2x4y=x39x2+24x的单调减区间是(2,4)(2)解:y=(xx3)=13x2=3(x2)=3(x+)(x)令3(x+)(x)0,解得xy=xx3的单调增区间是(,)令3(x+)(x)0,解得x或xy=xx3的单调减区间是(,)和(,+)2讨论二次函数y=ax2+bx+c(a0)的单调区间解:y=(ax2+bx+c)=2ax+b, 令2ax+b0,解得xy=ax2+bx+c(a0)的单调增区间是(,+)令2ax+b0,解得xy=ax2+bx+c(

7、a0)的单调减区间是(,)3求下列函数的单调区间(1)y= (2)y= (3)y=+x(1)解:y=()=当x0时,0,y0y=的单调减区间是(,0)与(0,+)(2)解:y=()当x3时,0,y0y=的单调减区间是(,3),(3,3)与(3,+)(3)解:y=(+x)当x0时+10,y0 y=+x的单调增区间是(0,+)1.函数f(x)=在区间(-2,+)上为增函数,那么实数a的取值范围为()A.0aB.aC.aD.a-2答案:C解析:f(x)=a+在(-2,+)递增,1-2a.2已知函数f(x)x22xalnx,若函数f(x)在(0,1)上单调,则实数a的取值范围是()Aa0Ba0或a4答

8、案:C解析:f(x)2x2,f(x)在(0,1)上单调, f(x)0或f(x)0在(0,1)上恒成立,即2x22xa0或2x22xa0在(0,1)上恒成立, 所以a(2x22x)或a(2x22x)在(0,1)上恒成立记g(x)(2x22x),0x1,可知4g(x)0, a0或a4,故选C.3函数f(x)x的单调区间为_答案:(3,0),(0,3)解析:f(x)1,令f(x)0,解得3x0或0x3,故单调减区间为(3,0)和(0,3)4.函数的单调增区间为_,单调减区间为_答案:;解析:5确定下列函数的单调区间:(1)y=x39x2+24x (2)y=3xx3答案(1)解:y=(x39x2+24

9、x)=3x218x+24=3(x2)(x4)令3(x2)(x4)0,解得x4或x2.y=x39x2+24x的单调增区间是(4,+)和(,2)令3(x2)(x4)0,解得2x4y=x39x2+24x的单调减区间是(2,4)(2)解:y=(3xx3)=33x2=3(x21)=3(x+1)(x1)令3(x+1)(x1)0,解得1x1.y=3xx3的单调增区间是(1,1).令3(x+1)(x1)0,解得x1或x1.y=3xx3的单调减区间是(,1)和(1,+)6函数yln(x2x2)的单调递减区间为_答案(,1)解析函数yln(x2x2)的定义域为(2,)(,1),令f(x)x2x2,f(x)2x10

10、,得x,函数yln(x2x2)的单调减区间为(,1)7已知yx3bx2(b2)x3在R上不是单调增函数,则b的范围为_答案b2解析若yx22bxb20恒成立,则4b24(b2)0,1b2,由题意b1或b2.8.已知xR,求证:exx+1证明:设f(x)=exx1,则f(x)=ex1当x=0时,f(x)=0,f(x)=0当x0时,f(x)0,f(x)在(0,+)上是增函数f(x)f(0)=0当x0时,f(x)0,f(x)在(,0)上是减函数,f(x)f(0)=09已知函数y=x+,试讨论出此函数的单调区间.解:y=(x+)=11x2=令0. 解得x1或x1.y=x+的单调增区间;是(,1)和(1

11、,+).令0,解得1x0或0x1. y=x+的单调减区间是(1,0)和(0,1)10已知函数的图象过点P(0,2),且在点M(1,f(1)处的切线方程为()求函数y=f(x)的解析式;()求函数y=f(x)的单调区间答案解:()由f(x)的图象经过P(0,2),知d=2,所以 由在M(-1,f(-1)处的切线方程是, 知故所求的解析式是 () 解得 当当故内是增函数,在内是减函数,在内是增函数点拨:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问题的能力11.已知函数f(x)=x3-x2+bx+c.(1)若f(x)在(-,+)上是增函数,求b的取值范围;答案解:(1)=

12、3x2-x+b,因f(x)在(-,+)上是增函数,则0.即3x2-x+b0,bx-3x2在(-,+)恒成立.设g(x)=x-3x2.当x=时,g(x)max=,b.12.已知函数f(x)=x(x-1)(x-a)在(2,+)上是增函数,试确定实数a的取值范围.答案解:f(x)=x(x-1)(x-a)=x3-(a+1)x2+ax=3x2-2(a+1)x+a要使函数f(x)=x(x-1)(x-a)在(2,+)上是增函数,只需=3x2-2(a+1)x+a在(2,+)上满足0即可.=3x2-2(a+1)x+a的对称轴是x=,a的取值应满足:或解得:a.a的取值范围是a.13已知函数 在区间上是增函数,求

13、实数的取值范围答案解:,因为在区间上是增函数,所以对恒成立,即对恒成立,解之得:所以实数的取值范围为点拨:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则;若函数单调递减,则”来求解,注意此时公式中的等号不能省略,否则漏解14.已知函数的图象过点P(0,2),且在点M(1,)处的切线方程,(1)求函数的解析式;(2)求函数的单调区间。答案解:(1)由的图象经过P(0,2),知,所以, 由在点M()处的切线方程为 即 解得故所求的解析式是(2) 令,解得当或时,当时,故在内是增函数,在内是减函数在内是增函数点拨:本题考查函数的单调性、导数的应用

14、等知识,考查运用数学知识分析问题和解决问题的能力15已知函数f(x),求导函数f (x),并确定f(x)的单调区间解析:f (x)令f (x)0,得xb1且x1.当b11,即b2时,f (x)的变化情况如下表:x(,b1)b1(b1,1)(1,)f (x)0当b11,即b2时,f (x)的变化情况如下表:x(,1)(1,b1)b1(b1,)f (x)0所以,当b2时,函数f(x)在(,b1)上单调递减,在(b1,1)上单调递增,在(1,)上单调递减当b2时,函数f(x)在(,1)上单调递减,在(1,b1)上单调递增,在(b1,)上单调递减当b11,即b2时,f(x),所以函数f(x)在(,1)

15、上单调递减,在(1,)上单调递减_基础巩固一、选择题1函数yx42x25的单调递减区间为()A(,1和0,1B1,0和1,)C1,1D(,1和1,)答案A解析y4x34x,令y0,即4x34x0,解得x1或0x1,所以函数的单调减区间为(,1)和(0,1),故应选A.2函数f(x)ax3x在R上为减函数,则()Aa0 Ba1Ca0时,f(x)0,g(x)0,则x0,g(x)0 Bf(x)0,g(x)0Cf(x)0 Df(x)0,g(x)0答案B解析f(x)为奇函数,g(x)为偶函数,奇(偶)函数在关于原点对称的两个区间上单调性相同(反),x0,g(x),则p是q的()A充分不必要条件 B必要不

16、充分条件C充分必要条件 D既不充分也不必要条件答案B解析f (x)3x24xm,f(x)在R上单调递增,f (x)0在R上恒成立,1612m0,m,故p是q的必要不充分条件5设f (x)是函数f(x)的导函数,yf (x)的图象如图所示,则yf(x)的图象最有可能的是()答案C分析由导函数f(x)的图象位于x轴上方(下方),确定f(x)的单调性,对比f(x)的图象,用排除法求解解析由f (x)的图象知,x(,0)时,f (x)0,f(x)为增函数,x(0,2)时,f(x)0,f(x)为增函数只有C符合题意,故选C.6(2014福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)设函数F(x)是定

17、义在R上的函数,其中f(x)的导函数f(x)满足f (x)e2f(0),f(2012)e2012f(0)Bf(2)e2012f(0)Cf(2)e2f(0),f(2012)e2f(0),f(2012)e2012f(0)答案C解析函数F(x)的导数F(x)0,函数F(x)是定义在R上的减函数,F(2)F(0),即,故有f(2)e2f(0)同理可得f(2012)e2012f(0)故选C.二、填空题7函数yln(x2x2)的单调递减区间为_答案(,1)解析函数yln(x2x2)的定义域为(2,)(,1),令f(x)x2x2,f (x)2x10,得x0,可得x;令f (x)0,可得3x.函数f(x)的单

18、调增区间为(,3),(,),单调减区间为(3,)一、选择题11(2012天津理,4)函数f(x)2xx32在区间(0,1)内的零点个数是()A0B1C2D3答案B解析本小题考查函数的零点与用导数判断函数的单调性,考查分析问题、解决问题的能力f(x)2xx32,0x0在(0,1)上恒成立,f(x)在(0,1)上单调递增又f(0)200210,f(0)f(1)0,可知方程无解,原函数没有巧值点;对于中的函数,要使f(x)f (x),则lnx,由函数f(x)lnx与y的图象有交点知方程有解,所以原函数有巧值点;对于中的函数,要使f(x)f (x),则tanx,即sinxcosx1,显然无解,所以原函

19、数没有巧值点;对于中的函数,要使f(x)f (x),则x1,即x3x2x10,设函数g(x)x3x2x1,g(x)3x22x10且g(1)0,显然函数g(x)在(1,0)上有零点,原函数有巧值点,故正确,选C.13(2014天门市调研)已知函数f(x)是定义在R上的可导函数,其导函数记为f(x),若对于任意实数x,有f(x)f(x),且yf(x)1为奇函数,则不等式f(x)ex的解集为()A(,0)B(0,)C(,e4)D(e4,)答案B解析令g(x),则g(x)0,所以g(x)在R上是减函数,又yf(x)1为奇函数,所以f(0)10,所以f(0)1,g(0)1,所以原不等式可化为g(x)0,

20、故选B.14已知函数yxf(x)的图象如图(1)所示(其中f (x)是函数f(x)的导函数),下面四个图象中,yf(x)的图象大致是()答案C解析当0x1时xf (x)0,f (x)1时xf(x)0,f(x)0,故yf(x)在(1,)上为增函数,因此否定A、B、D故选C.二、填空题15(2014衡阳六校联考)在区间a,a(a0)内图象不间断的函数f(x)满足f(x)f(x)0,函数g(x)exf(x),且g(0)g(a)0,又当0x0,则函数f(x)在区间a,a内零点的个数是_答案2解析f(x)f(x)0,f(x)为偶函数,g(x)exf(x),g(x)exf (x)f(x)0,g(x)在0,a上为单调增函数,又g(0)g(a)0,解得x3;又令f (x)0,解得1x0)若函数yf(x)在点(1,f(1)处的切线与直线x2y0垂直(1)求实数a的值;(2)求函数f(x)的单调区间解析(1)f(x)1,f(1)2,2a2a30,a0,a.(2)f(x)1,当x(0,)时,f (x)0,f(x)的单调递减区间为(0,),单调递增区间为(,)14

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服