ImageVerifierCode 换一换
格式:DOC , 页数:22 ,大小:2.60MB ,
资源ID:4675017      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4675017.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(人教版高数必修四第9讲:两角和与差的正余弦及正切公式(教师版).doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教版高数必修四第9讲:两角和与差的正余弦及正切公式(教师版).doc

1、两角和与差的正余弦、正切公式及二倍角公式_1、两角和与差的正弦、余弦、正切公式及其推导.2、灵活运用所学公式进行求值、化简、证明.一、 两角和的余弦公式: 的推导:复习:两点间的距离公式: 设, 推导过程:设角、角为任意角如左图在平面直角坐标系中作,则作单位圆,设角、角的终边分别与单位圆交于点B,点C再作由三角函数定义知: , , , ,由已知:; 展开并整理得: 上述公式称为两角和的余弦公式记为 解:那么, 所以cos()=cos=二、两角和与差的正弦公式: sin(+)=cos-(+)=cos(-)-=cos(-)cos+sin(-)sin=sincos+cossin. sin(-)=si

2、n+(-)=sincos(-)+cossin(-)=sincos-cossin.三、 两角和与差的正切公式:当cos(+)0时,tan(+)=如果coscos0,即cos0且cos0时,分子、分母同除以coscos得tan(+)=,据角、的任意性,在上面的式子中,用-代之,则有tan(-)=cos(+)=coscos-sinsinsin(+)=sincos+cossin,sin(-)=sincos-cossin.tan(+)=tan(-)= 四、 公式汇编:1两角和与差的三角函数;。2二倍角公式;。3三角函数式的化简常用方法:直接应用公式进行降次、消项;三角公式的逆用;切割化弦,异名化同名,异

3、角化同角等。(2)化简要求:能求出值的应求出值;使三角函数种数尽量少;使项数尽量少;尽量使分母不含三角函数;尽量使被开方数不含三角函数。(1)降幂公式; ; 。(2)辅助角公式,=公式的推导:令,则,于是有: 其中由,和共同确定类型一:正用公式例1.已知:,求的值.【思路点拨】直接利用两角差的余弦公式.【解析】由已知可求得.当在第一象限而在第二象限时,.当在第一象限而在第三象限时,.当在第二象限而在第二象限时,.当在第二象限而在第三象限时,.【点评】例1是对公式的正用当三角函数值的符号无法确定时,注意分类讨论.练习:【变式1】已知,则 .【答案】.【变式2】已知,则 .【答案】【变式3】已知和

4、是方程的两个根,求的值.【答案】【解析】由韦达定理,得, , .【高清课堂:三角恒等变换397881 例1】【变式4】某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)(2)(3)(4)(5) 试从上述五个式子中选择一个,求出这个常数 根据()的计算结果,将该同学的发现推广三角恒等式,并证明你的结论.【解析】.选择(2)式计算如下 .证明: 例2已知,,,求的值.【思路点拨】注意到,将,看做一个整体来运用公式.【解析】,,【点评】1、给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,例2中应用了的变换 ,体现了灵活解决问题的能力,应着重体会,常见的

5、变换技巧还有, 等.2、已知某一个(或两个)角的三角函数值,求另一个相关角的三角函数值,基本的解题策略是从“角的关系式”入手切入或突破.角的关系主要有互余(或互补)关系,和差(为特殊角)关系,倍半关系等.对于比较复杂的问题,则需要两种关系的混合运用.练习:【变式1】已知,是第二象限角,且,求的值.【答案】【解析】由且是第二象限角,得, ,.【变式2】函数的最大值为( )A B C D 【答案】C; 【解析】,.所以其最大值为2,故选C.【变式3】已知【答案】【解析】角的关系式:(和差与倍半的综合关系) , 【变式4】已知,求的值。【答案】【解析】 , , , 。 类型二:逆用公式例3.求值:(

6、1);(2);(3); (4).【思路点拨】逆用两角和(差)正(余)弦公式,正切公式.【解析】(1)原式=;(2)原式; (3)原式;(4)原式.【点评】把式中某函数作适当的转换之后,再逆用两角和(差)正(余)弦公式,二倍角公式等,即所谓“逆用公式”。辅助角公式:,其中角在公式变形过程中自然确定. 练习:【变式1】化简.【答案】【变式2】已知,那么的值为( )A B C D 【答案】A; 【解析】,.例4. 求值:(1);(2)【思路点拨】要使能利用公式化简,分子分母同乘以第一个角的正弦值.【解析】(1)原式=;(2)原式= 【点评】此种类型题比较特殊,特殊在:余弦相乘;后一个角是前一个角的2

7、倍;最大角的2倍与最小角的和与差是p。三个条件缺一不可。另外需要注意2的个数。应看到掌握了这些方法后可解决一类问题,若通过恰当的转化,转化成具有这种特征的结构,则可考虑采用这个方法。练习:【变式】求值:(1);(2).【答案】(1);(2)【解析】(1)原式=(2) 类型三:变用公式例5求值:(1) ;(2)(2)【思路点拨】通过正切公式,注意到与之间的联系.【解析】(1),原式.(2),.【点评】本题是利用了两角和正切公式的变形,找出与三者间的关系,进行转化,即所谓“变用公式”解决问题;变用公式在一些解三角问题中起着重要作用,需灵活掌握.但它是以公式原型为基础,根据题目需要而采取的办法,如:

8、,.练习:【变式1】求值:= 【答案】1【变式2】在中,,,试判断的形状.【答案】等腰三角形【解析】由已知得,即,又,故,故是顶角为的等腰三角形.类型四:三角函数式的化简与求值例6. 化简:(1);(2)【思路点拨】(1)中函数有正弦有正切,一般将切化弦处理;(2)中有平方,而且角度之间也有关系,所以要用二倍角公式降次.【解析】(1)原式=(2)原式=【点评】三角变换所涉及的公式实际上正是研究了各种组合的角(如和差角,倍半角等)的三角函数与每一单角的三角函数关系。因而具体运用时,注意对问题所涉及的角度及角度关系进行观察。三角变换中一般采用“降次”、“化弦”、“通分”的方法;在三角变换中经常用到

9、降幂公式:,.练习: 【变式1】化简:(1);(2); (3)【答案】(1)原式=;(2)原式=;(3)原式=.【变式2】若,且,则_.【答案】由,得,.例7已知,且,求的值.【思路点拨】题设中给出是角的正切值,故考虑正切值的计算,同时通过估算的区间求出正确的值.【解析】,而,故,又,故,从而,而,而,又,【点评】对给值求角问题,一般是通过求三角函数值实现的,先求出某一种三角函数值,再考虑角的范围,然后得出满足条件的角本例就是给值求角,关键是估算的区间,给值求角一定要将所求角限制在某个单值区间内,这是关键点也是难点在本例中使用了配角技巧,这些都要予以注意.练习:【变式1】已知,为锐角,则的值是

10、( )A. B. C. 或 D. 【答案】A【变式2】已知,求。【解析】,解得, ,.一、选择题1cos75cos15sin435sin15的值是()A0BCD答案A解析cos75cos15sin435sin15cos75cos15sin(36075)sin15cos75cos15sin75sin15cos(7515)cos900.2在ABC中,若sinAsinBcosAcosB,则ABC一定为()A等边三角形B直角三角形C锐角三角形D钝角三角形答案D解析sinAsinB0,cos(AB)0,A、B、C为三角形的内角,AB为锐角,C为钝角3化简sin(xy)sin(xy)cos(xy)cos(

11、xy)的结果是()Asin2xBcos2yCcos2xDcos2y答案B解析原式cos(xy)(xy)cos2y.4sin15cos75cos15sin105等于()A0BCD1答案D解析sin15cos75cos15sin105sin15cos(9015)cos15sin(9015)sin15sin15cos15cos15cos(1515)cos01.5sincos的值是()A0BCD2答案B解析原式222cos2.6ABC中,cosA,且cosB,则cosC等于()ABCD答案B解析由cosA0,cosB0知A、B都是锐角,sinA,sinB,cosCcos(AB)(cosAcosBsin

12、AsinB).二、填空题7若cos,(0,),则cos()_.答案解析cos,(0,),sin.cos()coscossinsin.8已知cosxcosy,sinxsiny,则cos(xy)_.答案解析cosxcosy,sinxsiny,cos2x2cosxcosycos2y,sin2x2sinxsinysin2y,两式相加得22cos(xy),cos(xy).三、解答题9已知sinsinsin,coscoscos.求证:cos().解析sinsinsinsinsinsincoscoscoscoscoscos22得22(coscossinsin)1,即得cos()._基础巩固1若sin xco

13、s x4m,则实数m的取值范围是()A2m6 B.6m6C2m6 D.2m4解析sin xcos x222cos4m,cos,1,解得2m6.答案A2.的值是()A. B. C. D.解析.答案C3(2012齐齐哈尔高一检测)若cos(),cos 2,并且、均为锐角,且,则的值为()A. B. C. D.解析0,0,02,由cos(),得sin (),由cos 2,得sin 2.cos()coscos 2cos()sin 2sin()3.又(0,),.答案C4cos 15sin 15_.解析cos 15sin 15(cos 15cos 45sin 15sin 45)cos(4515)cos 3

14、0.答案5(2012成都高一检测)若cos ,则cos_.解析cos ,sin ,coscos cossin sin.答案6已知,sin,sin,则cos_.解析,又sin(),sin,cos(),cos .coscoscos()cossin()sin.答案7已知:sin ,cos(),0,求cos 的值解因为sin ,0,所以cos .因为cos(),所以sin().所以cos cos()cos()cos sin()sin 1.8(2012蚌埠高一检测)若sin xcos xcos(x),则的一个可能值为()A B. C. D.解析sin xcos xcos xcossin xsincos,

15、故的一个可能值为.答案A9已知cos ,则cos sin 的值为_解析coscos cos sin sin cos sin ,故cos sin .答案10已知向量a(cos ,sin ),b(cos ,sin ),|ab|,求cos()解a(cos ,sin ),b(cos ,sin ),ab(cos cos ,sin sin )|ab|,22cos(),cos(). 能力提升一、选择题1. 已知,则( ). B. C. D. 答案:D ,2. 函数的最小正周期是( ). B. C. D. 答案: D 3. 在BC中,则ABC为( ). 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 无

16、法判定答案: C 为钝角4. 设,,则大小关系( ). B. C. D. 答案: D ,5. 函数是( ). 周期为的奇函数 B. 周期为的偶函数C. 周期为的奇函数 D. 周期为的偶函数答案: C ,为奇函数,6. 已知,则的值为( ). B. C. D. 答案: B 二、填空题1. 求值:_. 答案: 2. 若则 .答案: 3. 已知那么的值为 ,的值为 . 答案: 4. 的三个内角为、,当为 时,取得最大值,且这个最大值为 . 答案: 当,即时,得三、解答题1. 已知求的值. 解:. 若求的取值范围. 解:令,则2. 求值:解:原式 3. 已知函数求取最大值时相应的的集合;该函数的图象经过怎样的平移和伸变换可以得到的图象. 解: (1)当,即时,取得最大值 为所求22

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服