ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:664.77KB ,
资源ID:4673190      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4673190.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高等数学2期末复习题与答案.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高等数学2期末复习题与答案.doc

1、高等数学2期末复习题一、填空题:1. 函数的定义域是 1X2+Y23 .2.设则 .3.函数在点的全微分 4设则 .设则 .5.设 而 则 6函数 在点(1,2)处沿从点(1,2)到点(2,)的方向导数是 7.改换积分次序 ; .8若L是抛物线 上从点A到点B的一段弧,则= 9.微分方程的通解为 .二、选择题:1 等于 ( )(上下求导)A2, B. C.0 D.不存在2函数 的定义域是( D )A B. C. D3. ( B )A. B. C. D. 5.设,且F具有导数,则(D )A.; B.;C. ; D. .6曲线 ,在 处的切向量是 ( D )A B. C. D.7对于函数 ,原点

2、( A )A是驻点但不是极值点 B.不是驻点 C.是极大值点 D.是极小值点8设I=, 其中D是圆环所确定的闭区域,则必有( )AI大于零 B.I小于零 C.I等于零 D.I不等于零,但符号不能确定。9. 已知L是平面上不包含原点的任意闭曲线,若曲线积分 ,则a等于 ( ). A -1 B 1 C 2 D -210若L为连接及两点的直线段,则曲线积分=( )A0 B.1 C. D.211.设D为则( ) A.; B. ; C. ; D. .12. 微分方程的通解为( )A.; B.;C.;D.13.( )是微分方程在初始条件下的特解.A.;B.;C.;D.三、计算题:1.设,求 及,其中f 具

3、有一阶连续偏导数. 2 设, 求 , 3 求旋转抛物面 在点处的切平面及法线方程。4 求函数的极值5 计算,其中D是由圆周 及轴所围成的右 半闭区域.6 计算,其中D是以O(0,0),A(1,1),B(0,1)为顶点的三角形闭区域.7.计算 ,其中是三个坐标面与平面 所围成的区域.8.计算 ,其中L为圆 的正向边界。9.计算曲线积分 其中L是从O(0, 0)沿上半圆到A(2, 0). 10.验证:在整个面内,是某个函数的全微分,并求出这样的一个函数.11.求微分方程 的通解.12.求解微分方程的特解: 13.解微分方程 .四、应用题:1.用钢板制造一个容积为V的无盖长方形水池,应如何选择水池的

4、长、宽、高才最省钢板.2.已知矩形的周长为24cm,将它绕其一边旋转而构成一圆柱体,试求所得圆柱体体积最大时的矩形面积.3.求抛物线所围成的闭区域的面积.4.求抛物面与锥面所围成的立体的体积.高等数学2期末复习题答案一、填空题:1、 2、 3、 4、 5、6、 (注:方向导数)7、; 8、 (注:) 9、二、选择题:1、A; 2. D; 3. B; 4.缺 5. D; 6. D; 7. A; 8. A; 9. A; 10.C;11. C; 12.C; 13.D三、计算题:1.解:令,则 2. 解:两方程分别两边对求偏导数,注意是关于的二元函数,得 即 这是以为未知量的二元线性方程组。当 时,有

5、 ,3. 解:旋转抛物面 在点处的切向量 于是,所求切平面方程为 ,即 法线方程为 4. 解:解方程组,得四个驻点.又 . 对且,则是函数的极小值点; 对,则不是极值点; 对,则不是极值点; 对,且,则是函数的极大值点. 于是,函数有极小值,极大值 .5. 解:利用极坐标变换,令,则,且D可表示为:.于是 .6. 解:三角形区域D由直线及轴围成,选择先对积分,.(注:此题也可以参看课本167页例2的解法)7.解题过程见课本124页例1.8. 解:在L围成的圆域D:上全在连续的偏导数,从而 .于是由格林公式,得.9. 解:,有 在整个平面上恒成立,所以曲线积分与路径无关,故可取轴上线段OA作为积

6、分路径.OA的方程为,且从0变到2,从而.10. 解:,有 , 即有在整个平面上恒成立,因此在整个面内,是某个函数的全微分.取ARB为积分路径,其中各点坐标分别为,得 .11. 解法一:方程可改写为 ,这是一阶非齐次线性微分方程.先求对应的齐次线性方程的通解. 由,分离变量,得,两边积分,解得 .用常数变易法,将换成.即,.代入原方程,化简得 .故 .于是方程的通解为 .解法二:方程可改写为 .这是一阶非齐次线性微分方程,其中.利用通解公式 .12. 课本212页第8题第(1)小题。 解:原方程可写成 .令,即 ,有 ,则原方程成为 ,分离变量,得 .两边积分,得.代入并整理,得通解 .由初始

7、条件得 .于是所求特解为 .13.解题过程见课本212页例5.四、应用题:1.解法一:设水池的长、宽、高分别是.已知xyz=V,从而高,水池表面的面积 S的定义域. 这个问题就是求二元函数S在区域D内的最小值. 解方程组 在区域D内解得唯一得驻点.根据实际问题可知最小值在定义域内必存在,因此可断定此唯一驻点就是最小值点.即当长,宽均为,高为时,水池所用材料最省. 解法二:设水池的长、宽、高分别是.已知xyz=V,水池表面的面积 S的定义域.此题就是求函数在约束条件xyz=V下的最小值.构造拉格朗日函数 . 解方程组 比较(1),(2),(3)式,得 x=y=2z,代入(4)式中,有,即.于是,

8、x,y,z只有唯一一组解.由问题的实际意义最小值在定义域内必存在.因此,函数S在其唯一驻点处必取得最小值.故当长方形水池的长,宽,高分别是时所用材料最省.2.解题过程见课本98页例4.3.利用二重积分求闭区域的面积解:所求区域的面积为 ,其中D为抛物线所围成的闭区域.两曲线交于两点(0,0),(1,2).选择先对积分,于是,.4.利用三重积分计算立体的体积. 解法一:所求立体的体积为 ,其中是抛物面与锥面所围成的立体. 利用直角坐标计算.由与消去,解得,即在面上的投影区域D为圆域.于是.因此 = (用极坐标) .解法二:所求立体的体积为 ,其中是抛物面与锥面所围成的立体. 利用柱面坐标计算. 由与消去,解得,即在面上的投影区域D为圆域.于是,在柱面坐标变换下.因此 .13

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服