ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:958.01KB ,
资源ID:4672261      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4672261.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高中文科数学三角函数.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中文科数学三角函数.doc

1、第三讲、三角函数 八、 基本初等函数II(三角函数)   (一)任意角的概念、弧度制 1.了解任意角的概念。 2.了解弧度制概念,能进行弧度与角度的互化。   (二)三角函数     1.理解任意角三角函数(正弦、余弦、正切)的定义。     2.能利用单位圆中的三角函数线推导出的正弦、余弦、正切的诱导公式,能画出 的图像,了解三角函数的周期性。     3.理解正弦函数、余弦函数的性质(如单调性、最大值和最小值以及与x轴交点等),理解正切函数的单调性。     4.理解同角三角函数的基本关系式: 。     5.了解函数的物理意义;能画出的图像,了解参数 对函

2、数图像变化的影响。     6.会用三角函数解决一些简单实际问题。 角的概念的推广和弧度制 1角和角终边相同: 2几种终边在特殊位置时对应角的集合为: 角的终边所在位置 角的集合 X轴正半轴 Y轴正半轴 X轴负半轴 Y轴负半轴 X轴 Y轴 坐标轴 3弧度制定义:我们把长度等于半径长的弧所对的圆心角叫1弧度角 角度制与弧度制的互化: 1弧度 4弧长公式: (是圆心角的弧度数) 5扇形面积公式: 任意角的三角函数、诱导公式 1 三角函数的定义:以角的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角的终边上

3、任取一个异于原点的点,点P到原点的距离记为,那么 ; ; ; (; ; ) 2 三角函数的符号: Ⅰ Ⅱ Ⅲ Ⅳ sin + + - - cos + - - + tan + - + - cot + - + - 3特殊角的三角函数值: 0 sin 0 1 0 cos 1 0 0 tan 0 1 ∞ 0 ∞ cot ∞ 1 0 ∞ 0 4三角函数的定义域、值域: 函 数 定 义

4、 域 值 域 5诱导公式:可用十个字概括为“奇变偶不变,符号看象限”。 诱导公式一:,,其中 诱导公式二: ; 诱导公式三: ; 诱导公式四:; 诱导公式五:; - sin -sin sin -sin -sin sin cos cos cos -cos -cos cos cos sin (1)要化的角的形式为(为常整数); (2)记忆方法:“函数名不变,符号看象限”。 同角三角函数的基本关系 1倒数关系:,, 2商数关系:, 3平方关系:,, 两角和与差的

5、正弦、余弦、正切 1和、差角公式 ; ; 2二倍角公式 ; ; 3降幂公式 ;; 4半角公式 ;; 5万能公式 ;; 6积化和差公式 ;; ; 7和差化积公式 ;; ; 8三倍角公式: sin3= cos3= 9辅助角公式: 三角函数的图像与性质 1 正弦函数、余弦函数、正切函数的图像 2三角函数的单调区间 3函数 最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中心 4由y=sinx的图象变换出y=sin(ωx+)的图象一般有两个途径,只有区别开这两

6、个途径,才能灵活进行图象变换 途径一:先平移变换再周期变换(伸缩变换) 先将y=sinx的图象向左(>0)或向右(<0)平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得y=sin(ωx+)的图象 途径二:先周期变换(伸缩变换)再平移变换 先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0=平移个单位,便得y=sin(ωx+)的图象 5 由y=Asin(ωx+)的图象求其函数式: 给出图象确定解析式y=Asin(ωx+)的题型,有时从寻找“五点”中的第一零点(-,0)作为突破口,要从图象的升降情况找准第一个零点的位置 6对

7、称轴与对称中心: 的对称轴为,对称中心为; 的对称轴为,对称中心为; 对于和来说,对称中心与零点相联系,对称轴与最值点联系 7 求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A、的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; 8 求三角函数的周期的常用方法: 经过恒等变形化成“、”的形式,在利用周期公式,另外还有图像法和定义法 9五点法作y=Asin(ωx+)的简图: 五点取法是设x=ωx+,由x取0、、π、、2π来求相应的x值及对应的y值,再描点作图 三角函数的最值及综合应用 1y=asinx+bcosx型函数最值的求法:

8、常转化为y= sin(x+) 2y=asin2x+bsinx+c型 常通过换元法转化为y=at2+bt+c型: 3y=型 (1)当时,将分母与乘转化变形为sin(x+)=型 (2)转化为直线的斜率求解(特别是定义域不是R时,必须这样作) 4.同角的正弦余弦的和差与积的转换: 同一问题中出现,求它们的范围,一般是令或或,转化为关于的二次函数来解决 5.已知正切值,求正弦、余弦的齐次式的值: 如已知,求的值,一般是将不包括常数项的式子的分母1用代换,然后分子分母同时除以化为关于的表达式 6.几个重要的三角变换: sin α cos α可凑倍角公式; 1±cos α可用升次

9、公式; 1±sin α 可化为,再用升次公式; 或 (其中 )这一公式应用广泛,熟练掌握. 7 单位圆中的三角函数线:三角函数线是三角函数值的几何表示,四种三角函数y = sin x、y = cos x、y = tan x、y = cot x的图象都是“平移”单位圆中的三角函数线得到的. 8 三角函数的图象的掌握体现:把握图象的主要特征(顶点、零点、中心、对称轴、单调性、渐近线等);应当熟练掌握用“五点法”作图的基本原理以及快速、准确地作图. 9三角函数的奇偶性 ① 函数y = sin (x+φ)是奇函数. ② 函数y = sin (x+φ)是偶函数. ③ 函数y =cos

10、x+φ)是奇函数. ④ 函数y = cos (x+φ)是偶函数. 一、选择题 1、 下列各三角函数值中,取负值的是( ); A.sin(-6600) B.tan(-1600) C.cos(-7400) D.sin(-4200)cos570 2、α角是第二象限的角,││=,则角属于: ( ) A. 第一象限;B.第二象限;C.第三象限;D.第四象限. 3、已知、是第二象限的角,且,则 ( ) A.; B.; C.;D.以上都不对. 4、函数y= sin(2x+)的一个增区间是( ) A. [-] B. [-] C.

11、[-] D. [-] 5、已知-x< ,cosx=,则m的取值范围是( ) A.m<-1 B. 33 D. 3

12、 ③ 的图象关于点 对称; ④ 的图象关于直线对称. 以上命题成立的序号是__________________. 13、函数y=f(x) 的图象上每个点的纵坐标保持不变, 将横坐标伸长到原来的两倍, 然后再将整个图象沿x轴向左平移个单位, 得到的曲线与y=sinx的图象相同, 则y=f(x) 的函数表达式是_________________; 三、解答题 14、当时,化简: 15、已知、是方程的两实根,求: (1) m的值; (2)的值. 16、已知,且、是方程的两根,求函数的值域. 17、函数的一个周期内的图象如下图,求y的解析式。 (其中 ) 18、已知函数的最大值是3,并且在区间 上是增函数,在上是减函数,求.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服