1、人教版八年级上学期期末模拟数学检测试卷带答案一、选择题1、下列图形既是轴对称图形又是中心对称图形的是()ABCD2、“春风不来,三月的柳絮不飞”,据测定,柳絮纤维的直径约是0.00000105米,将数据0.00000105用科学记数法表示为()ABCD3、下列计算正确的是()Ax2x5x7B(x5)2x7C(2x)32x3Dx8x2x44、要使分式有意义,则x的取值范围是()ABCD5、下列从左至右的变形,属于因式分解的是()ABCD6、下列式子从左至右变形不正确的是()ABCD7、如图,下列四个条件,可以确定与全等的是()A、B、C、D、8、若关于x的方程的解为,则a等于()AB4CD9、如
2、图,直线CEDF,CAB125,ABD85,则1+2()A30B35C36D40二、填空题10、如图,在四边形中,对角线平分,下列结论正确的是()ABCD与的大小关系不确定11、如果分式的值为零,那么x_12、若点P(2,a)关于x轴的对称点为Q(b,1),则(a+b)3的值是 _13、已知:,则A+B_14、若,则_15、如图,的面积为24,的长为8,平分,E、F分别是和上的动点,则的最小值为_16、若多项式是一个完全平方式,则k的值为_17、如图,两个正方形的边长分别为a、b,如果a+b10,ab18,则阴影部分的面积为 _18、如图,已知四边形ABCD中,AB12cm,BC10cm,CD
3、14cm,BC,点E为AB的中点如果点P在线段BC上以2cm/s的速度沿BC运动,同时,点Q在线段CD上由C点向D点运动当点Q的运动速度为 _cm/s时,能够使BPE与CQP全等三、解答题19、因式分解:(1);(2)20、解下列分式方程:(1)(2)21、已知:如图,12,BAED,BCED求证:ABAE22、如图,直线l线段BC,点A是直线l上一动点在ABC中,AD是ABC的高线,AE是BAC的角平分线(1)如图1,若ABC65,BAC80,求DAE的度数;(2)当点A在直线l上运动时,探究BAD,DAE,BAE之间的数量关系,并画出对应图形进行说明23、某商场准备购进甲、乙两种商品进行销
4、售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同设每个乙商品的进价为x元(1)每个甲商品的进价为_元(用含x的式子表示);(2)求每个甲、乙商品的进价分别是多少?24、阅读下列材料:利用完全平方公式,可以将多项式变形为的形式,我们把这种变形方法,叫做配方法运用配方法及平方差公式能对一些多项式进行因式分解例如:根据以上材料,解答下列问题:(1)用配方法将化成的形式,则 _;(2)用配方法和平方差公式把多项式进行因式分解;(3)对于任意实数x,y,多项式的值总为_(填序号)正数非负数 025、阅读理解题:定义:如果一个数的平方等于1,记为i
5、21,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似例如:计算:(2i)+(5+3i)(2+5)+(1+3)i7+2i;(1+i)(2i)12i+2ii22+(1+2)i+13+i;根据以上信息,完成下列问题:(1)填空:i3 ,i4 ,i+i2+i3+i2021 ;(2)计算:(1+i)(34i)(2+3i)(23i);(3)已知a+bi(a,b为实数),求的最小值一、选择题1、A【解析】A【分析】根据中心对称图形与轴对称图形的概念进行判断即可【详解】解:A既是中心对称图形,也是轴对称图
6、形,故此选项符合题意;B不是中心对称图形,也不是轴对称图形,故此选项不合题意;C不是中心对称图形,是轴对称图形,故此选项不合题意;D是中心对称图形,不是轴对称图形,故此选项不合题意;故选:A【点睛】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转度后与自身重合2、C【解析】C【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】解:0.00000
7、105=,故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、A【解析】A【分析】利用同底数幂的乘法及除法的法则,幂的乘方与积的乘方的法则对各项进行运算即可【详解】解:A、,故本选项符合题意;B、,故本选项不符合题意;C、,故本选项不符合题意;D、,故本选项不符合题意故选:A【点睛】此题考查了同底数幂的乘法及除法,幂的乘方与积的乘方,关键是能准确理解并运用相关计算法则4、D【解析】D【分析】根据分式在意义的条件:分母不为零,则可求得x的取值范围【详解】解:由题意得:,则得,故选:D【点睛】本题考查
8、了使分式有意义的条件,解题的关键是掌握对于分式,一定要注意分母不为零这个条件5、C【解析】C【分析】根据因式分解的定义以及因式分解所遵循的原则逐项判断即可【详解】A项,右边不是积的形式,故不是因式分解;B项,等式两边不相等,故不是因式分解;C项,根据因式分解的定义可知是因式分解;D项,故因式分解不彻底;故选:C【点睛】本题考查了因式分解的定义以及因式分解遵循的基本原则把一个多项式化为几个整式的积的形式,这种式子变形叫做多项式的因式分解,遵循的原则:多项式是恒等变形;结果必须是积的形式;分解因式必须进行到每一个多项式因式都不能在分解为止等6、A【解析】A【分析】根据分式的基本性质,进行计算即可解
9、答【详解】解:A、不符合分式的基本性质,原变形错误,故此选项符合题意;B、分子分母同时乘4,符合分式的基本性质,原变形正确,故此选项不符合题意;C、符合分式的基本性质,原变形正确,故此选项不符合题意;D、符合分式的基本性质,原变形正确,故此选项不符合题意故选:A【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键分式的基本性质:分式的分子与分母同乘或除以一个不等于的整式,分式的值不变7、D【解析】D【分析】根据全等三角形的判定方法对选项逐个判断,即可求解【详解】解:A、已知两边与一角(非夹角),不能判定与全等,不符合题意;B、已知三个角相等,不能判定与全等,不符合题意;C、已知
10、两边与一角(非夹角),不能判定与全等,不符合题意;D、已知两角与一边,可以通过AAS判定与全等,符合题意;故选:D【点睛】此题考查了全等三角形的判定,解题的关键是掌握全等三角形的判定方法8、D【解析】D【分析】根据方程的解的定义,把x1代入原方程,原方程左右两边相等,从而原方程转化为含a的新方程,解此新方程可以求得a的值【详解】解:把x1代入方程得:,解得:a故选:D【点睛】本题考查了分式方程的解,关键是要掌握方程的解的定义,由已知解代入原方程得到新方程,然后再解答9、A【解析】A【分析】根据三角形的外角的性质可得,根据平行线的性质可得,进而即可求得【详解】解:CEDF,CAB125,ABD8
11、5,故选A【点睛】本题考查了三角形外角的性质,平行线的性质,掌握三角形外角的性质是解题的关键二、填空题10、A【解析】A【分析】先通过在AB上截取AE=AD,得到一对全等三角形,利用全等三角形的性质得到对应边相等,再利用三角形的三边关系和等量代换即可得到A选项正确【详解】解:如图,在AB上取,对角线平分,在和中,故选:【点睛】本题考查了全等三角形的判定与性质、角平分线的定义和三角形的三边关系,要求学生能根据已知条件做出辅助线构造全等三角形,并能根据全等三角形的性质得到不同线段之间的关系,利用三角形三边关系判断大小,解决本题的关键是牢记概念和公式,正确作辅助线构造全等三角形等11、【分析】根据分
12、式有意义的条件,分式值为0的条件即可求得的值【详解】解:分式的值为零,解得故答案为:【点睛】本题考查了分式值为0,分式有意义的添加,理解分式值为0的前提是分式必须有意义是解题的关键12、1【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得出a,b的值,从而得出(a+b)2、【详解】解:点P(2,a)关于x轴的对称点为Q(b,1),a=,b=2,(a+b)3=1故答案为1【点睛】本题主要考查了关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单13、A【解析】3【分析】根据分式的加减运算将右边的分式合并之后,运用待定系数法建立关于A,B的方程组求解即可【详解】解:,解得:故答案为:
13、2、【点睛】本题考查分式的加减运算,解题的关键是熟练运用分式的加减运算法则,本题属于基础题型14、8【分析】先把和都化为2为底数的形式,然后利用整体代入求解即可【详解】,则故答案为:【点睛】本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方的运算法则是解答本题关键15、6【分析】在上取点,使,过点C作,垂足为H,连接、,交于,得出根据E、F分别是和上的动点,三角形三边的关系和垂线段最短得出,求出的长即可得出的最小值【详解】解:如图所示,在上取点,使,过点C【解析】6【分析】在上取点,使,过点C作,垂足为H,连接、,交于,得出根据E、F分别是和上的动点,三角形三边的关系和垂线段最短得出,求出的
14、长即可得出的最小值【详解】解:如图所示,在上取点,使,过点C作,垂足为H,连接、,交于,的面积为24,的长为8,平分,又,(SAS),E、F分别是和上的动点,当C、E、共线且点与点H重合时,即,这时的值最小,最小值为5、故答案为:5、【点睛】本题考查轴对称最短路线问题灵活应用角平分线性质、三角形三边的关系、垂线段最短,将所求最小值转化为求的长是解题的关键16、42【分析】根据完全平方式的特点得到-2k=276,由此求出k【详解】解:多项式是一个完全平方式,-2k=276,解得k=42,故答案为:k=41、【点睛】此题考【解析】42【分析】根据完全平方式的特点得到-2k=276,由此求出k【详解
15、】解:多项式是一个完全平方式,-2k=276,解得k=42,故答案为:k=41、【点睛】此题考查了已知完全平方式求参数,掌握完全平方式的特点:两个平方项的和与这两个平方项底数的2倍的和或差,这三项组成的式子叫完全平方式17、23【分析】利用完全平方公式变形求出a2+b2,利用面积公式计算可得阴影部分面积【详解】解:a+b10,ab18,a2+b2=(a+b)2-2ab=100-36=64,阴影部分的【解析】23【分析】利用完全平方公式变形求出a2+b2,利用面积公式计算可得阴影部分面积【详解】解:a+b10,ab18,a2+b2=(a+b)2-2ab=100-36=64,阴影部分的面积=23,
16、故答案为:22、【点睛】此题考查了完全平方公式的变形计算,正确掌握完全平方公式法则是解题的关键18、2或【分析】设运动时间为t秒,点Q的运动速度是vcm/s,则BP=2t cm,CQ=vt cm,CP=(10-2t)cm,求出BE=6cm,根据全等三角形的判定得出当BE=CP,BP=CQ或BE=【解析】2或【分析】设运动时间为t秒,点Q的运动速度是vcm/s,则BP=2t cm,CQ=vt cm,CP=(10-2t)cm,求出BE=6cm,根据全等三角形的判定得出当BE=CP,BP=CQ或BE=CQ,BP=CP时,BPE与以C、P、Q三点所构成的三角形全等,再代入求出t、v即可【详解】设运动时
17、间为t秒,点Q的运动速度是vcm/s,则BP=2t cm,CQ=vt cm,CP=(10-2t)cm,E为AB的中点,AB=12cm,BE=AE=6cm,B=C,要使BPE与以C、P、Q三点所构成的三角形全等,必须BE=CP,BP=CQ或BE=CQ,BP=CP,当BE=CP,BP=CQ时,6=10-2t,2t=vt,解得:t=2,v=2,即点Q的运动速度是2cm/s,当BE=CQ,BP=CP时,6=vt,2t=10-2t,解得:t=,v=,即点Q的运动速度是cm/s,故答案为2或【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS
18、,ASA,AAS,SSS,两直角三角形全等还有HL等三、解答题19、(1)(2)【分析】(1)先提取公因式,再运用平方差公式分解因式即可;(2)先提取公因式,再运用完全平方公式分解因式即可(1)解:;(2) 【点睛】本题考查因式分解提【解析】(1)(2)【分析】(1)先提取公因式,再运用平方差公式分解因式即可;(2)先提取公因式,再运用完全平方公式分解因式即可(1)解:;(2) 【点睛】本题考查因式分解提公因式法和公式法综合,熟练掌握因式分解的方法是解题的关键20、(1)(2)【分析】(1)先去分母化为一元一次方程求解,然后进行检验即可;(2)先去分母化为一元一次方程求解,然后进行检验即可(1
19、)去分母,得移项,得合并同类项,得系数化为1,得【解析】(1)(2)【分析】(1)先去分母化为一元一次方程求解,然后进行检验即可;(2)先去分母化为一元一次方程求解,然后进行检验即可(1)去分母,得移项,得合并同类项,得系数化为1,得检验,当时,0原方程的解为(2)方程两边同时乘,得化简得,解得检验:当时,0,原方程的解为【点睛】题目主要考查解分式方程的一般步骤,熟练掌握解分式方程的方法是解题关键21、见解析【分析】证明DAECAB(AAS),由全等三角形的性质得出AB=AE【详解】证明:1=2,1+EAC=2+EAC,DAE=CAB在DAE和CAB中【解析】见解析【分析】证明DAECAB(A
20、AS),由全等三角形的性质得出AB=AE【详解】证明:1=2,1+EAC=2+EAC,DAE=CAB在DAE和CAB中,DAECAB(AAS),AB=AE【点睛】本题考查了全等三角形的判定及性质,证明DAECAB是解题的关键22、(1)15(2)见解析【分析】(1)根据角平分线的定义得BAEBAC40而BAD90ABD25,利用角的和差关系可得答案;(2)根据高在形内和形外进行分类,再根据A【解析】(1)15(2)见解析【分析】(1)根据角平分线的定义得BAEBAC40而BAD90ABD25,利用角的和差关系可得答案;(2)根据高在形内和形外进行分类,再根据AB,AC,AD的位置进行讨论(1)
21、解:AE是BAC的角平分线,BAEBAC40,AD是ABC的高线,BDA90,BAD90ABD25,DAEBAEBAD402515(2)当点D落在线段CB的延长线时,如图所示:此时BADBAEDAE;当点D在线段BC上,且在E点的左侧时,如图所示:此时BADDAEBAE;当点D在线段BC上,且在E点的右侧时,如图所示:此时BAEDAEBAD;当点D在BC的延长线上时,如图所示:BAEDAEBAD【点睛】本题主要考查了角平分线的定义,三角形内角和定理等知识,运用分类讨论思想是解题的关键23、(1)x-2;(2)甲商品的进价每个8元,乙商品的进价每个10元【分析】(1)根据数量关系:每个甲商品的进
22、价=每个乙商品的进价-2即可表示甲商品的进价;(2)根据等量关系用80元购进甲商品的【解析】(1)x-2;(2)甲商品的进价每个8元,乙商品的进价每个10元【分析】(1)根据数量关系:每个甲商品的进价=每个乙商品的进价-2即可表示甲商品的进价;(2)根据等量关系用80元购进甲商品的数量=用100元购进乙商品的数量列分式方程求解即可(1)解:每个甲商品的进价比每个乙商品的进价少2元,每个甲商品的进价=每个乙商品的进价-2即可表示甲商品的进价,设每个乙商品的进价为x元,每个甲商品的进价为(x-2)元,故答案为:x-2;(2)解:由每个乙商品的进价为x元,得每个甲商品的进价为(x-2)元,则, ,经
23、检验x=10是原方程的解,原方程的解为x=10,当x=10时,x-2=8,答:甲商品的进价每个8元,乙商品的进价每个10元【点睛】本题主要考查了列代数式及分式方程的应用,找出等量关系列分式方程求解是解本题的关键24、(1);(2);(3)【分析】(1)根据材料所给方法解答即可;(2)材料所给方法进行解答即可;(3)局部进行因式分解,最后写成非负数的积的形式即可完成解答.【详解】解:(1)=.(2【解析】(1);(2);(3)【分析】(1)根据材料所给方法解答即可;(2)材料所给方法进行解答即可;(3)局部进行因式分解,最后写成非负数的积的形式即可完成解答.【详解】解:(1)=.(2)原式=(3
24、)=11故答案为.【点睛】本题考查了配方法,根据材料学会配方法并灵活运用配方法解题是解答本题的关键.25、(1)i,1,;(2)i6;(3)的最小值为24、【分析】(1)根据题目所给条件可得i3=i2i,i4=i2i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即【解析】(1)i,1,;(2)i6;(3)的最小值为24、【分析】(1)根据题目所给条件可得i3=i2i,i4=i2i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;(3)根据题目已知条件,a+bi4+3i,求出a、b,即可得出答案【详解】(1)i3i2i1ii,i4i2i21(1)1,设Si+i2+i3+i2021,iSi2+i3+i2021+i2022,(1i)Sii2022,S,故答案为i,1,;(2)(1+i)(34i)(2+3i)(23i)34i+3i4i2(49i2)3i+449i6;(3)a+bi4+3i,a4,b3,的最小值可以看作点(x,0)到点A(0,4),B(24,3)的最小距离,点A(0,4)关于x轴对称的点为A(0,4),连接AB即为最短距离,AB25,的最小值为24、【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100