ImageVerifierCode 换一换
格式:PPTX , 页数:23 ,大小:247.46KB ,
资源ID:4600895      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4600895.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(七年级数与式复习规律探索.pptx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级数与式复习规律探索.pptx

1、找找 规规 律律七年级数与式复习七年级数与式复习1 1观察下列各组数,尝试写出第观察下列各组数,尝试写出第n n个数:个数:(1 1)有一列数:)有一列数:2 2,4 4,6 6,8 8,1010,则第则第n n个数是个数是 ;序号:序号:1 1,2 2,3 3,4 4,5 5,n n数列:数列:2 2,4 4,6 6,8 8,1010,2n一、自觉体悟一:探究体验一、自觉体悟一:探究体验2n若无特殊说明,本节课中的字母若无特殊说明,本节课中的字母n n都表示都表示正整正整数数,并且,并且n n从从1 1开始开始。(2 2)有一列数:)有一列数:2 2,4 4,8 8,1616,3232,则第

2、则第n n个数是个数是 ;序号:序号:1 1,2 2,3 3,4 4,5 5,n n数列:数列:2 2,4 4,8 8,1616,3232,(1)经历了一个)经历了一个类比类比的过程,体验了的过程,体验了类比类比的数学思想。的数学思想。数学,很有趣,很好玩!数学,很有趣,很好玩!2n2n(2)经历了一个)经历了一个从特殊到一般从特殊到一般的过程,体验了的过程,体验了从特殊从特殊到一般到一般的数学思想。的数学思想。生活模型生活模型1 1折纸:层数折纸:层数2 2拉面:根数拉面:根数基于哲学的思考:基于哲学的思考:不能孤立、静止地看问题,加强不能孤立、静止地看问题,加强事物(事件)之间的联系,特别

3、是与生活的联系。事物(事件)之间的联系,特别是与生活的联系。2n2n248248数学,很有趣,很好玩!数学,很有趣,很好玩!(3 3)有一列数:)有一列数:1 1,3 3,6 6,1010,1515,则第则第n n个数是个数是 ;序号:序号:1 1,2 2,3 3,4 4,5 5,n n数列:数列:1 1,3 3,6 6,1010,1515,1=11=1,1+2=31+2=3,1+2+3=61+2+3=6,1+2+3+4=101+2+3+4=10,1+2+3+4+5=151+2+3+4+5=15,1+2+3+1+2+3+(n-1n-1)+n=+n=数学,很有趣,很好玩!数学,很有趣,很好玩!生

4、活模型生活模型2圆形物体堆放的圆形物体堆放的层数层数与与总个数总个数的关系的关系1 13 36 61 1线段的条数线段的条数1 13 36 61 1观察下列各组数,尝试写出第观察下列各组数,尝试写出第n n个数:个数:(1 1)有一列数:)有一列数:2 2,4 4,6 6,8 8,1010,则第则第n n个数是个数是 ;(2 2)有一列数:)有一列数:2 2,4 4,8 8,1616,3232,则第则第n n个数是个数是 ;(3 3)有一列数:)有一列数:1 1,3 3,6 6,1010,1515,则第则第n n个数是个数是 ;2n2n温故知新:什么是找规律?温故知新:什么是找规律?核心概念:

5、核心概念:找出找出一个代数式来表示某事物(或事件)一个代数式来表示某事物(或事件)的演变准则的演变准则的过程的过程叫做找规律。叫做找规律。要关注找规律的方法的多样性要关注找规律的方法的多样性(4)有一列数:)有一列数:,第,第n个数个数 ;操作感悟:操作感悟:说说你探究的步骤有哪些?说说你探究的步骤有哪些?(1 1)分析;()分析;(2 2)尝试;()尝试;(3 3)归纳;()归纳;(4 4)验证。)验证。核心知识:核心知识:找规律步骤找规律步骤 (析、试、归、验析、试、归、验)1 1、观察分析:与序号联系;、观察分析:与序号联系;2 2、推理尝试:纵横向类比;、推理尝试:纵横向类比;3 3、

6、猜想归纳:写出关系式;、猜想归纳:写出关系式;4 4、验证规律:取多值验证。、验证规律:取多值验证。(4)有一列数:)有一列数:,第,第n个数个数 ;也可以表示成:也可以表示成:(1 1)当)当n n为奇数时,第为奇数时,第n n个数为个数为 ;(2 2)当)当n n为偶数时,第为偶数时,第n n个数为个数为 ;体现了体现了分类思想分类思想二、自觉体悟二:做中感悟二、自觉体悟二:做中感悟 问题:问题:一张矩形纸条的面积为一张矩形纸条的面积为1 1个平方单个平方单位,对这张矩形纸条进行平行方向连续位,对这张矩形纸条进行平行方向连续n n次对次对折后展开,在操作的过程中,你发现哪些量折后展开,在操

7、作的过程中,你发现哪些量是变化的?将提出什么问题?是变化的?将提出什么问题?序号:序号:1 1,2 2,3 3,4 4,5 5,n n层数:层数:2 2,4 4,8 8,1616,3232,面积:面积:,折痕:折痕:1 1,3 3,7 7,1515,3131,2n-12n经验升华:建立联系经验升华:建立联系已知:一张矩形纸条的面积为已知:一张矩形纸条的面积为1 1个平方单位,现将纸个平方单位,现将纸条进行若干次平行方向对折,根据你的操作过程,条进行若干次平行方向对折,根据你的操作过程,填写下表:填写下表:对折次对折次数数所得层数所得层数(层)(层)单层面积(平方单层面积(平方单位)单位)折痕条

8、数(条)折痕条数(条)1 1 2 2 3 3 4 4 n n 经验升华:建立联系经验升华:建立联系已知:一张矩形纸条的面积为已知:一张矩形纸条的面积为1 1个平方单位,现将纸个平方单位,现将纸条进行若干次平行方向对折,根据你的操作过程,条进行若干次平行方向对折,根据你的操作过程,填写下表:填写下表:对折次对折次数数所得层数所得层数(层)(层)单层面积(平方单层面积(平方单位)单位)折痕条数(条)折痕条数(条)1 1 2 2 1 12 2 4 4 3 33 3 8 8 7 74 4 16 16 15 15 n n 2 2n n 2 2n n-1-1说说你有什么感悟?说说你有什么感悟?三、变式引领

9、三、变式引领例例1 1观察:观察:9 91=241=24;25251=461=46;49491=681=68;81811=8101=810;按;按此规律写出第此规律写出第n n个等式是个等式是 。你的解题策略是什么?你的解题策略是什么?例例1 1观察:观察:9 91=241=24;3 32 21=241=24;1 1 25 251=461=46;5 52 21=461=46;2 2 49 491=681=68;7 72 21=681=68;3 3 81 811=8101=810;9 92 21=8101=810;4 4 ;第第n n个等式是个等式是()2 2-1=()-1=()()。数学,很有

10、趣,很好玩!数学,很有趣,很好玩!2n+12n2n+2例例1 1观察:观察:9 91=241=24;3 32 21=241=24;1 1 25 251=461=46;5 52 21=461=46;2 2 49 491=681=68;7 72 21=681=68;3 3 81 811=8101=810;9 92 21=8101=810;4 4 解法分析解法分析1 1改变已知等式的改变已知等式的排列形式排列形式利于观察分析;利于观察分析;2 2抓住抓住变与不变变与不变利于推理尝试;利于推理尝试;3 3紧扣与紧扣与序号序号关联关联利于猜想归纳;利于猜想归纳;4 4归纳是否正确归纳是否正确一定要一定要

11、验证验证。体现了数学中的体现了数学中的转化思想转化思想第第n n个等式是个等式是 (2n+12n+1)2 2-1=2n-1=2n(2n+22n+2)。例例2 2下图是某同学在沙滩上用石子摆成的小下图是某同学在沙滩上用石子摆成的小房子:房子:观察图形的变化规律,则第观察图形的变化规律,则第n n个小房子用个小房子用的石子块数为的石子块数为 个个 探探究究规规律律型型题题有有时时可可从从数数量量关关系系表表示示的的规规律律入入手手,也也可可从图形本身和规律入手从图形本身和规律入手.如图,由若干根火柴棒拼成小金鱼的图形:(1)拼一个金鱼需要 根火柴;(2)拼三个金鱼需要 根火柴;(3)拼n个金鱼需要

12、 根火柴。8=6+28=6+220=36+2 6n+2四、形成测试四、形成测试解法分析解法分析1 1观察、比较观察、比较各个图形间的关联各个图形间的关联;2 2分离出分离出基本图形;基本图形;3 3每一个每一个基本图形与火柴棒数量的关系;基本图形与火柴棒数量的关系;4 4基本图形的数量基本图形的数量与序号的关系与序号的关系。体现数学中的体现数学中的基本图形思想基本图形思想五、自觉回归五、自觉回归2 2知识结构分析知识结构分析探求数列的规律探求数列的规律探求图形的规律探求图形的规律探求等式的规律探求等式的规律1 1概念回顾概念回顾 找出找出一个代数式来表示某事物(或事件)的演变一个代数式来表示某

13、事物(或事件)的演变准则准则的过程的过程叫做找规律。叫做找规律。3找规律步骤:析、试、归、验找规律步骤:析、试、归、验(1 1)观察分析:与序号联系;)观察分析:与序号联系;(2 2)推理尝试:纵横向类比;)推理尝试:纵横向类比;(3 3)猜想归纳:写出关系式;)猜想归纳:写出关系式;(4 4)验证规律:取多值验证。)验证规律:取多值验证。有一列数:有一列数:2 2,4 4,8 8,1616,3232,则第则第n n个数是个数是 ;序号:序号:1 1,2 2,3 3,4 4,5 5,n n数列:数列:2 2,4 4,8 8,1616,3232,(1)经历了一个)经历了一个类比类比的过程,体验了

14、的过程,体验了类比类比的数学思想。的数学思想。2n2n(2)经历了一个)经历了一个从特殊到一般从特殊到一般的过程,体验了的过程,体验了从特殊从特殊到一般到一般的数学思想。的数学思想。4数学思想回顾数学思想回顾例例1 1观察:观察:9 91=241=24;3 32 21=241=24;1 1 25 251=461=46;5 52 21=461=46;2 2 49 491=681=68;7 72 21=681=68;3 3 81 811=8101=810;9 92 21=8101=810;4 4 解法分析解法分析1 1改变已知等式的改变已知等式的排列形式排列形式利于观察分析;利于观察分析;2 2抓住抓住变与不变变与不变利于推理尝试;利于推理尝试;3 3紧扣与紧扣与序号序号关联关联利于猜想归纳;利于猜想归纳;4 4归纳是否正确归纳是否正确一定要一定要验证验证。(3)体现了数学中的)体现了数学中的转化思想转化思想第第n n个等式是个等式是 (2n+12n+1)2 2-1=2n-1=2n(2n+22n+2)。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服