ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:18.26KB ,
资源ID:4496824      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4496824.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(21平面向量的实际背景及基本概念.docx)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

21平面向量的实际背景及基本概念.docx

1、2.1.1 向量的物理背景与概念 向量的几何表示 相等向量与共线向量 教学目标: 1. 了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量. 2. 通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别. 3. 通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力. 教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. 教学过程: 引言:请同学指出哪些量

2、既有大小又有方向哪些量只有大小没有方向 新课学习: 〔一〕向量的概念:我们把既有大小又有方向的量叫向量。 〔二〕请同学阅读课本后答复: 1、数量与向量有何区别 2、如何表示向量 4、长度为零的向量叫什么向量长度为1的向量叫什么向量 5、满足什么条件的两个向量是相等向量单位向量是相等向量吗 6、有一组向量,它们的方向相同或相反,这组向量有什么关系 7、如果把一组平行向量的起点全部移到一点O,这时它们是不是平行向量 这时各向量的终点之间有什么关系 〔三〕探究学习 A(起点) B 〔终点〕 a 1、数量与向量的区别: 数量只有大小,是一个

3、代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ①用有向线段表示;②用字母a、b〔黑体,印刷用〕等表示; ③用有向线段的起点与终点字母:;④向量的大小―长度称为向量的模,记作||. 3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别: 〔1〕向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,这两个向量就是相同的向量; 〔2〕有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段. 4、零向量、单位向量概念: ①长度为0的向量叫零向量,

4、记作.的方向是任意的. 注意与0的含义与书写区别. ②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义: ①方向相同或相反的非零向量叫平行向量;②我们规定与任一向量平行. 说明:〔1〕综合①、②才是平行向量的完整定义;〔2〕向量a、b、c平行,记作a∥b∥c. 6、相等向量定义: 长度相等且方向相同的向量叫相等向量. 说明:〔1〕向量a与b相等,记作a=b;〔2〕零向量与零向量相等; 〔3〕任意两个相等的非零向量,都可用同一条有向线段表示,并且与有向线段的起点无关. 7、共线向量与平行向量关系: 平行向量就是共线

5、向量,因为任一组平行向量都可移到同一直线上〔与有向线段的起点无关〕. 说明:〔1〕平行向量可以在同一直线上,要区别于两平行线的位置关系; 〔2〕共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. 〔四〕理解和稳固: 例1 书本75页例1 . 例2判断及解答: 〔1〕平行向量是否一定方向相同 〔2〕与任意向量都平行的向量是什么向量 〔3〕假设两个向量在同一直线上,那么这两个向量一定是什么向量 例3.如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、、相等的向量. 变式一:与向量长度相等的向量有多少个 变式二:是否存在与向量长度相等、方向相反的向量 变

6、式三:与向量共线的向量有哪些 例4判断及解答: 〔1〕不相等的向量是否一定不平行 〔2〕与零向量相等的向量必定是什么向量 〔3〕当且仅当满足什么条件时两个非零向量相等 〔4〕共线向量一定在同一直线上吗 例5以下命题正确的选项是〔 〕 A.a与b共线,b与c共线,那么a与c也共线 B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点 C.向量a与b不共线,那么a与b都是非零向量 D.有相同起点的两个非零向量不平行 课堂练习: 1.判断以下命题是否正确,假设不正确,请简述理由. ①向量与是共线向量,那么A、B、C、D四点必在一直线上; ②单位向量都相等; ③任一向量与它的相反向量不相等; ④四边形ABCD是平行四边形当且仅当= ⑤一个向量方向不确定当且仅当模为0; ⑥共线的向量,假设起点不同,那么终点一定不同. 2、课本77页练习1、2、3、4题 三、小结 : 1、 描述向量的两个指标:模和方向. 2、平面向量的概念和向量的几何表示; 3、向量的模、零向量、单位向量、平行向量等概念。 四、课后作业: 习题2.1A组3,4题

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服