1、第2课时 圆柱、圆锥、圆台、球、简单组合体的结构特征
[A 基础达标]
1.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是( )
A.两个圆锥拼接而成的组合体
B.一个圆台
C.一个圆锥
D.一个圆锥挖去一个同底的小圆锥
解析:选D.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周,如图,钝角△ABC中,AB边最小,以AB为轴,其他两边旋转一周,得到的几何体是一个圆锥挖去一个同底的小圆锥.故选D.
2.如图所示的组合体的结构特征是( )
A.一个棱柱中截去一个棱柱
B.一个棱柱中截去一个圆柱
C.一个棱柱中截去一个棱锥
D.一个棱柱中截
2、去一个棱台
解析:选C.如题图,可看成是四棱柱截去一个角,即截去一个三棱锥后得到的简单组合体,故为一个棱柱中截去一个棱锥所得.
3.如图所示的几何体,关于其结构特征,下列说法不正确的是 ( )
A.该几何体是由2个同底的四棱锥组成的几何体
B.该几何体有12条棱、6个顶点
C.该几何体有8个面,并且各面均为三角形
D.该几何体有9个面,其中一个面是四边形,其余各面均为三角形
解析:选D.该几何体用平面ABCD可分割成两个四棱锥,因此它是这两个四棱锥的组合体,因而四边形ABCD是它的一个截面而不是一个面.故D说法不正确.
4.如图,将阴影部分图形绕图示直线l旋转一周所得的几
3、何体是( )
A.圆锥
B.圆锥和球组成的简单组合体
C.球
D.一个圆锥内部挖去一个球后组成的简单组合体
答案:D
5.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是( )
A.①② B.①③
C.④ D.①⑤
解析:选D.一个圆柱挖去一个圆锥,剩下的几何体被一个竖直的平面所截后,圆柱的轮廓是矩形除去一条边,圆锥的轮廓是三角形除去一条边或抛物线的一部分.
6.如图所示的组合体的结构特征有以下几种说法:
①由一个长方体割去一个四棱柱构成.
②
4、由一个长方体与两个四棱柱组合而成.
③由一个长方体挖去一个四棱台构成.
④由一个长方体与两个四棱台组合而成.
其中正确说法的序号是__________.
解析:该组合体可以看作是由一个长方体割去一个四棱柱构成的,也可以看作是由一个长方体与两个四棱柱组合而成的.
答案:①②
7.若母线长是4的圆锥的轴截面的面积是8,则该圆锥的高是________.
解析:设圆锥的底面半径为r,则圆锥的高h= .
由题意可知·2r·h=r=8,所以r2=8,所以h=2.
答案:2
8.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为___
5、cm.
解析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12 cm,BC=8-3=5 (cm).
所以AB==13(cm).
答案:13
9.指出图中的三个几何体分别是由哪些简单几何体组成的.
解:(1)几何体由一个圆锥、一个圆柱和一个圆台拼接而成.
(2)几何体由一个六棱柱和一个圆柱拼接而成.
(3)几何体由一个球和一个圆柱中挖去一个以圆柱下底面为底面、上底面圆心为顶点的圆锥拼接而成.
10.一个圆锥的高为2 cm,母线与轴的夹角为30°,求圆锥的母线长及圆锥的轴截面的面积.
解:如图轴截面SAB,圆锥SO的底面直径为AB,SO为高,S
6、A为母线,则∠ASO=30°.
在Rt△SOA中,AO=SO·tan 30°=(cm).
SA===(cm).
所以S△ASB=SO·2AO=(cm2).
所以圆锥的母线长为cm,圆锥的轴截面的面积为cm2.
[B 能力提升]
11.用一张长为8,宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是( )
A.2 B.2π
C.或 D.或
解析:选C.如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=.所以选C.
12.某地球仪上北纬30°纬线圈的长度为1
7、2π cm,如图所示,则该地球仪的半径是________cm.
解析:如图所示,由题意知,北纬30°所在小圆的周长为12π,则该小圆的半径r=6,其中∠ABO=30°,
所以该地球仪的半径R==
4 cm.
答案:4
13.圆锥底面半径为1 cm,高为 cm,其中有一个内接正方体,这个内接正方体的棱长为________cm.
解析:圆锥的轴截面SEF、正方体对角面ACC1A1如图.设正方体的棱长为x cm,则AA1=x cm,A1C1=x cm.作SO⊥EF于点O,则SO= cm,OE=1 cm.因为△EAA1∽△ESO,
所以=,即=.
所以x=,即该内接正方体的棱长为
8、cm.
答案:
14.一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2.求:
(1)圆台的高;
(2)截得此圆台的圆锥的母线长.
解:(1)圆台的轴截面是等腰梯形ABCD(如图所示).
由已知可得上底半径O1A=2 cm,
下底半径OB=5 cm,又因为腰长为12 cm,所以高AM==3(cm).
(2)如图所示,延长BA,OO1,CD,交于点S,设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO可得=,解得l=20(cm),即截得此圆台的圆锥的母线长为20 cm.
[C 拓展探究]
15.如图所示,有一圆锥形粮堆,母线与底面直径构成边长为6 m的正三角形ABC,粮堆母线AC的中点P处有一只老鼠正在偷吃粮食.此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,求小猫所经过的最短路程.(结果不取近似值)
解:因为△ABC为等边三角形,
所以BC=6,
所以l=2π×3=6π,
根据底面圆的周长等于展开后扇形的弧长,得:
=6π,
故n=180°,则∠B′AC=90°,
所以B′P==3(m),
所以小猫所经过的最短路程是3 m.
- 5 -