ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:2.31MB ,
资源ID:4491852      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4491852.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2019_2020学年新教材高中数学第五章统计与概率5.4统计与概率的应用课后篇巩固提升新人教B版必修第二册.docx)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2019_2020学年新教材高中数学第五章统计与概率5.4统计与概率的应用课后篇巩固提升新人教B版必修第二册.docx

1、5.4 统计与概率的应用 课后篇巩固提升 夯实基础 1.甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为13和14,则至少有一人破译出密码的概率是(  ) A.12 B.512 C.1112 D.14 答案A 解析设甲译出密码为事件A,乙译出密码为事件B,则事件A与B相互独立,所以至少有一人破译出密码的概率为P(AB+AB+AB)=P(AB)+P(AB)+P(AB)=13×1-14+1-13×14+13×14=12. 2.一批产品的合格率为90%,检验员抽检时出错率为10%,则检验员抽取一件产品,检验为合格品的概率为(  ) A.0.81 B.0.82 C.0.90

2、D.0.91 答案B 解析∵一批产品的合格率为90%,检验员抽检时出错率为10%,∴检验员抽取一件产品,检验为合格品的概率是0.9×0.9+0.1×0.1=0.82.故选B. 3.某高一学生为了获得某名校的荣誉毕业证书,在“体音美2+1+1项目”中学习游泳.他每次游泳测试达标的概率都为60%,现采用随机模拟的方法估计该同学三次测试恰有两次达标的概率:先由计算器产生0到9之间的整数随机数,指定1,2,3,4表示未达标,5,6,7,8,9,0表示达标;再以每三个随机数为一组,代表三次测试的结果.经随机模拟产生了如下20组随机数: 917 966 891 925 271 932 872 45

3、8 569 683 431 257 393 027 556 488 730 113 507 989 据此估计,该同学三次测试恰有两次达标的概率为(  ) A.0.50 B.0.40 C.0.43 D.0.48 答案A 解析因为这20个数据中符合条件的有917,891,925,872,458,683,257,027,488,730,共10个,所以所求事件的概率为1020=0.5,故选A. 4.甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为(  ) A.16 B.14 C.13 D.1

4、2 答案D 解析①甲、乙在同一组的概率P1=13. ②甲、乙不在同一组,但相遇的概率P2=23×12×12=16. 所以甲、乙相遇的概率P=13+16=12.故选D. 5.如图,用K,A1,A2三类不同的元件连接成一个系统.当K正常工作且A1,A2至少有一个正常工作时,系统正常工作,已知K,A1,A2正常工作的概率依次是0.9,0.8,0.8,则系统正常工作的概率为(  ) A.0.960 B.0.864 C.0.720 D.0.576 答案B 解析A1,A2同时不能正常工作的概率为0.2×0.2=0.04,所以A1,A2至少有一个正常工作的概率为1-0.04=0.96,

5、所以系统正常工作的概率为0.9×0.96=0.864.故选B. 6.甲、乙两人参加“社会主义核心价值观”知识竞赛,甲、乙两人能荣获一等奖的概率分别为23和34,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为(  ) A.34 B.23 C.57 D.512 答案D 解析设甲、乙获一等奖的概率分别是P(A)=23,P(B)=34, 则P(A)=1-23=13,P(B)=1-34=14, 所以这两人中恰有一人获得一等奖的概率为P(AB+AB)=P(AB)+P(AB)=P(A)P(B)+P(A)P(B)=13×34+23×14=512.故选D. 7.某班准备到

6、郊外野营,为此向商店定了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷是等可能的,只要帐篷如期运到,他们就不会淋雨,则淋雨的概率是     .  答案14 解析由题意知,下雨的概率为12,不下雨的概率为12,准时收到帐篷的概率为12,不能准时收到帐篷的概率为12.当下雨且不能准时收到帐篷时会淋雨,所以淋雨的概率为12×12=14. 8.为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X表示学生的考核成绩,并规定X≥85为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图. (

7、1)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率; (2)从图中考核成绩满足X∈[80,89]的学生中任取2人,求至少有一人考核优秀的概率; (3)记P(a≤X≤b)表示学生的考核成绩在区间[a,b]的概率,根据以往培训数据,规定当Px-8510≤1≥0.5时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由. 解(1)由茎叶图中的数据可以知道,30名同学中,有7名同学考核优秀, 所以估计这名学生考核优秀的概率为730. (2)设从图中考核成绩满足X∈[80,89]的学生中任取2人, 至少有一人考核成绩优秀为事件A, 因为图中成

8、绩在[80,89]的6人中有2个人考核优秀,所以样本空间Ω包含15个样本点,事件B包含9个样本点,所以P(A)=915=35. (3)根据图中的数据知,满足x-8510≤1的成绩有16个,所以Px-8510≤1=1630=815>0.5, 所以可以认为此次冰雪培训活动有效. 能力提升 1.春节期间支付宝开展了集福活动,假定每次扫福都能得到一张福卡(福卡一共有五种:爱国福、富强福、和谐福、友善福、敬业福),且得到每一种类型福卡的概率相同,若小张已经得到了富强福、和谐福、友善福,则小张再扫两次可以集齐五福的概率为     ,小张再扫三次才可以集齐五福的概率为     .  答案225 1

9、4125 解析(1)由题意可得小张扫第一次得到爱国福或敬业福,概率为P1=25, 扫第二次得到另外一张福卡的概率P2=15, 则小张再扫两次可以集齐五福的概率为P=P1P2=225. (2)由题意可得小张扫三次,前两次只得爱国福与敬业福中的一个的概率为P3=25×35+35×25+25×15=1425,第三次得另一张卡片的概率为P2=15,则小张再扫三次才可以集齐五福的概率为P=P3P4=14125. 2.某市派出甲、乙两支球队参加全省足球冠军赛.甲、乙两队夺取冠军的概率分别是37和14,该市足球队夺得全省足球冠军的概率为     .  答案1928 解析该市甲队夺取冠军与乙队夺

10、取冠军是互斥事件,分别记为事件A,B, 该市甲、乙两支球队夺取全省足球冠军是事件A∪B发生, 根据互斥事件的概率加法公式得到P(A∪B)=P(A)+P(B)=37+14=1928. 3.《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数多少衰出之,问各几何?”其意为“今有甲带了560钱,乙带了350钱,丙带了180钱,三人一起出关,共需要交关税100钱,依照钱的多少按比例出钱”,则丙应出     钱(所得结果四舍五入,保留整数).  答案17 解析依照钱的多少按比例出钱,所以丙应该出180560+350+18

11、0×100=1801090≈17(钱). 4.交强险是车主为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,且保费与上一年车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表: 交强险浮动因素和费率浮动比率表 浮动因素 浮动比率 A 上一个年度未发生有责任道路交通事故 下浮10% B 上两个年度未发生有责任道路交通事故 下浮20% C 上三个及以上年度未发生有责任道路交通事故 下浮30% D 上一个年度发生一次有责任不涉及死亡的道路交通事故 0%

12、 E 上一个年度发生两次及两次以上有责任道路交通事故 上浮10% F 上一个年度发生有责任道路交通死亡事故 上浮30% 某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了70辆车龄已满三年该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格: 类型 A B C D E F 数量 10 13 7 20 14 6 (1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率; (2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损6 000元,一辆

13、非事故车盈利10 000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列各题: ①若该销售商店内有7辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选2辆,求这2辆车恰好有一辆为事故车的概率; ②若该销售商一次性购进70辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值(结果用分数表示). 解(1)一辆普通6座以下私家车第四年续保时保费高于基本保费的频率为14+670=27. (2)①由统计数据可知,该销售商店内的7辆该品牌车龄已满三年的二手车中有2辆事故车,设为b1,b2,5辆非事故车,设为a1,a2,a3,a4,a5.从7辆车中随机挑选2辆车的情况有(b1,b2)

14、b1,a1),(b1,a2),(b1,a3),(b1,a4),(b1,a5),(b2,a1),(b2,a2),(b2,a3),(b2,a4),(b2,a5),(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5),共21种.其中2辆车恰好有一辆为事故车的情况有(b1,a1),(b1,a2),(b1,a3),(b1,a4),(b1,a5),(b2,a1),(b2,a2),(b2,a3),(b2,a4),(b2,a5),共10种,所以该顾客在店内随机挑选2辆车,这2辆车恰好有一辆事故车的概率为1021. ②由统计数据可知,该销售商一次购进70辆该品牌车龄已满三年的二手车有事故车20辆,非事故车50辆,所以一辆车盈利的平均值为170[(-6000)×20+10000×50]=380007(元). 7

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服