ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:2.57MB ,
资源ID:4491842      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4491842.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2019_2020学年新教材高中数学第八章立体几何初步8.4.1平面应用案巩固提升新人教A版必修第二册.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2019_2020学年新教材高中数学第八章立体几何初步8.4.1平面应用案巩固提升新人教A版必修第二册.doc

1、8.4.1 平面 [A 基础达标] 1.下列说法中正确的是(  ) A.三点确定一个平面 B.四边形一定是平面图形 C.梯形一定是平面图形 D.两个不同平面α和β有不在同一条直线上的三个公共点 解析:选C.不共线的三点确定一个平面,故A不正确;四边形有时指空间四边形,故B不正确;梯形的上底和下底平行,可以确定一个平面,故C正确;两个平面如果相交,一定有一条交线,所有这两个平面的公共点都在这条交线上,故D不正确,故选C. 2.给出以下四个命题: ①不共面的四点中,其中任意三点不共线; ②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面; ③若直线a

2、b共面,直线a,c共面,则直线b,c共面; ④依次首尾相接的四条线段必共面. 其中正确命题的个数是(  ) A.0            B.1 C.2 D.3 解析:选B.①假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线,所以①正确;②如图,两个相交平面有三个公共点A,B,C,但A,B,C,D,E不共面;③显然不正确;④不正确,因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形. 3.已知α,β为平面,A,B,M,N为点,a为直线,下列推理错误的是(  ) A.A∈a,A∈β,B∈a,B∈β⇒a⊂β B.M∈

3、α,M∈β,N∈α,N∈β⇒α∩β=MN C.A∈α,A∈β⇒α∩β=A D.A,B,M∈α,A,B,M∈β,且A,B,M不共线⇒α,β重合 解析:选C.选项C中,α与β有公共点A,则它们有过点A的一条交线,而不是点A,故C错. 4.在空间四边形ABCD中,在AB,BC,CD,DA上分别取E,F,G,H四点,如果GH,EF交于一点P,则(  ) A.P一定在直线BD上 B.P一定在直线AC上 C.P在直线AC或BD上 D.P既不在直线BD上,也不在AC上 解析:选B.由题意知GH⊂平面ADC,GH,EF交于一点P,所以P∈平面ADC.同理,P∈平面ABC.因为平面ABC∩平面

4、ADC=AC,由基本事实3可知点P一定在直线AC上. 5.下列各图均是正六棱柱,P,Q,R,S分别是所在棱的中点,这四个点不共面的图形是(  ) 解析:选D.在选项A,B,C中,由棱柱、正六边形、中位线的性质,知均有PS∥QR,即在此三个图形中P,Q,R,S共面,故选D. 6.设平面α与平面β相交于l,直线a⊂α,直线b⊂β,a∩b=M,则M________l. 解析:因为a∩b=M,a⊂α,b⊂β,所以M∈α,M∈β.又因为α∩β=l,所以M∈l. 答案:∈ 7.已知空间四点中无任何三点共线,那么这四点可以确定平面的个数是________. 解析:其中三个点可确定唯一的平面

5、当第四个点在此平面内时,可确定1个平面,当第四个点不在此平面内时,则可确定4个平面. 答案:1或4 8.看图填空: (1)平面AB1∩平面A1C1=________; (2)平面A1C1CA∩平面AC=________. 答案:A1B1 AC 9.按照给出的要求,完成图中两个相交平面的作图,图中所给线段AB分别是两个平面的交线. 解:以AB为其中一边,分别画出来表示平面的平行四边形.如图. 10.已知空间四边形ABCD(如图所示),E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且CG=BC,CH=DC.求证: (1)E,F,G,H四点共面;

6、2)直线FH,EG,AC共点. 证明:(1)连接EF,GH.因为E,F分别是AB,AD的中点,所以EFBD,因为G,H分别是BC,CD上的点,且CG=BC,CH=DC. 所以GHBD, 所以EF∥GH, 所以E,F,G,H四点共面. (2)因为E,F分别是AB,AD的中点,所以EFBD, 因为G,H分别是BC,CD上的点,且CG=BC,CH=DC. 所以GHBD, 所以EF∥GH,且EF≠GH,所以四边形EFHG是梯形, 设两腰EG,FH相交于一点T. 因为EG⊂平面ABC,FH⊂平面ACD, 所以T∈平面ABC,且T∈平面ACD,又平面ABC∩平面ACD=AC, 所

7、以T∈AC,即直线EG,FH,AC相交于一点T. [B 能力提升] 11.空间四点A,B,C,D共面但不共线,那么这四点中(  ) A.必有三点共线 B.必有三点不共线 C.至少有三点共线 D.不可能有三点共线 解析:选B.若AB∥CD,则AB,CD共面,但A,B,C,D任何三点都不共线,故排除A,C;若直线l与直线外一点A在同一平面内,且B,C,D三点在直线l上,所以排除D.故选B. 12.如图,平面α∩平面β=l,A、B∈α,C∈β,C∉l,直线AB∩l=D,过A、B、C三点确定的平面为γ,则平面γ、β的交线必过(  ) A.点A B.点B C.点C,但不过点D

8、 D.点C和点D 解析:选D.根据基本事实判定点C和点D既在平面β内又在平面γ内,故在β与γ的交线上.故选D. 13.在正方体ABCD­A1B1C1D1中,M,N分别是棱DD1和BB1上的点,MD=DD1,NB=BB1,那么正方体过点M,N,C1的截面图形是(  ) A.三角形 B.四边形 C.五边形 D.六边形 解析:选C.在正方体ABCD­A1B1C1D1中,M,N分别是棱DD1和BB1上的点,MD=DD1,NB=BB1.如图,延长C1M交CD的延长线于点P,延长C1N交CB的延长线于点Q,连接PQ交AD于点E,AB于点F,连接NF,ME,则正方体过点M,N,C1的截

9、面图形是五边形,故选C. 14.如图所示,AB∩α=P,CD∩α=P,A,D与B,C分别在平面α的两侧,AC∩α=Q,BD∩α=R.求证:P,Q,R三点共线. 证明:因为AB∩α=P,CD∩α=P, 所以AB∩CD=P. 所以AB,CD可确定一个平面,设为β. 因为A∈AB,C∈CD,B∈AB,D∈CD, 所以A∈β,C∈β,B∈β,D∈β. 所以AC⊂β,BD⊂β,平面α,β相交. 因为AB∩α=P,AC∩α=Q,BD∩α=R, 所以P,Q,R三点是平面α与平面β的公共点. 所以P,Q,R都在α与β的交线上,故P,Q,R三点共线. [C 拓展探究] 15.如图,在正方体ABCD­A1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:B,Q,D1三点共线. 证明:如图,连接A1B,CD1,显然B∈平面A1BCD1,D1∈平面A1BCD1. 所以BD1⊂平面A1BCD1. 同理BD1⊂平面ABC1D1 所以平面ABC1D1∩平面A1BCD1=BD1.因为A1C∩平面ABC1D1=Q,所以Q∈平面ABC1D1. 又因为A1C⊂平面A1BCD1,所以Q∈平面A1BCD1. 所以Q在平面A1BCD1与ABC1D1的交线上, 即Q∈BD1,所以B,Q,D1三点共线. - 6 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服