ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:454KB ,
资源ID:4449571      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4449571.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2022届高三3月质量检测(文科)数学试卷-答案.docx)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022届高三3月质量检测(文科)数学试卷-答案.docx

1、福建省泉州市2017届高三3月质量检测(文)数学试卷 答 案 1~5.CBCBD 6~10.AACBD 11.A 12.C 二、填空题 13.4 14. 15. 16. 三、解答题 17.(Ⅰ)设等差数列的公差为. 由题意,可得, 整理,得,即,解得, 又,故, 所以. . (Ⅱ) 故, 可化为,即,即, 因为在上为增函数,且, 所以的最大值为9. 18.解:(1)取的中点,连结,交于,连结.此时为所求作的点(如图所示). 下面给出证明: ∵,∴,又,∴四边形是平行四边形, 故即. 又平面平面,∴平面; ∵平面,平面,∴平面. 又

2、∵平面平面, ∴平面平面, 又∵平面,∴平面. (2)在等腰梯形中,∵, ∴可求得梯形的高为,从而的面积为. ∵平面,∴是三棱锥的高. 设三棱锥的高为. 由,可得, 即,解得, 故三棱锥的高为. 19.解:(Ⅰ)由频率分布直方图可知,得分在的频率为, 再由内的频数6,可知抽取的学生答卷数为60人, 则,得; 又由频率分布直方图可知,得分在的频率为0.2,即, 解得. 进而求得. (Ⅱ)由频率分布直方图可知,得分在的频率为0.2, 由频率估计概率,可估计从全校答卷中任取一份,抽到“优秀”的概率为0.2, 设该校测试评定为“优秀”的学生人数为,则,解得, 所以

3、该校测试评定为“优秀”的学生人数约为600. (Ⅲ)“良好”与“优秀”的人数比例为24:12=2:1, 故选取的6人中“良好”有4人,“优秀”有2人, “良好”抽取4人,记为,“优秀”抽取2人,记为, 则从这6人中任取2人,所有基本事件如下: 共15个, 事件:“所抽取的2人中有人为‘优秀’”含有8个基本事件, 所以所求概率. 20.(Ⅰ)抛物线的焦点的坐标为. 因为, 所以可求得点坐标为. 将点坐标代入得, 解得, 故抛物线方程为. (Ⅱ)依题意,可知与轴不垂直,故可设的方程为, 并设的中点. 联立方程组,消去,得, 所以. 因为线段的中点的纵坐标为1,

4、 所以,即. 因为直线与交于, 所以,得, 故. 由,令得, 故, 设,则, 设, 令得或, 由得,由得, 所以的单调增区间为,单调减区间为, 当时,;当时,,故, 所以的最大值是2. 注:面积也可通过求弦长和点到直线的距离建立,可参照上述类似给分. 21.解:(Ⅰ), , 令得. 当,即时,,故在上单调递增, 当,即时,令,得,所以在上单调递减; 同理,可得在上单调递增. 当,即时,令,得,所以在上单调递减; 同理,可得在上单调递增. 综上可知,当时,在上单调递减,在上单调递增, 当时,在上单调递增, 当时,在上单调递减,在上单调递增. (Ⅱ

5、由(Ⅰ)知,当在上单调递增时,,故. 不妨设,则要证, 只需证, 即证, 只需证, 令, 则,不等式可化为. 下面证明:对任意, 令,即, 则, 令,则,所以在上单调递增, 又,所以当时,即, 故在上单调递增, 又, 所以当时,, 故对任意,, 所以对任意且,. 22.解一:(Ⅰ)由直线的参数方程(为参数), 消去参数得,, 即直线的普通方程为, 由圆的极坐标方程为,得, 将代入(*)得,, 即的直角坐标方程为. (Ⅱ)将直线的参数方程代入得,, , 设两点对应的参数分别为, 则, 所以, 因为, 所以当时,取得最小值. 【注:未能

6、指出取得最小值的条件,扣1分】 解法二:(Ⅰ)同解法一 (Ⅱ)由直线的参数方程知,直线过定点, 当直线时,线段长度最小. 此时,, 所以的最小值为. 解法三: (Ⅰ)同解法一 (Ⅱ)圆心到直线的距离, , 又因为, 所以当时,取得最大值. 又, 所以当时,取得最小值. 23.解(Ⅰ):. ①当时,由不等式,解得. 此时原不等式的解集是:. ②当时,由不等式,解得. 此时原不等式的解集是:. ③当时,由不等式,解得, 此时原不等式的解集是:. 综上可得原不等式的解集为. (Ⅱ)由(Ⅰ)可得,函数的图像是如下图所示的折线图. 因为, 故当时,直线与曲线围成一个三角形, 即的范围是. 且当时,. - 7 - / 7

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服