ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:319.52KB ,
资源ID:4449013      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4449013.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022年普通高等学校招生全国统一考试数学理试题(广东卷).docx)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022年普通高等学校招生全国统一考试数学理试题(广东卷).docx

1、2022年普通高等学校招生全国统一考试广东卷数学理科逐题详解参考公式:台体的体积公式,其中分别是台体的上、下底面积,表示台体的高.一、选择题:本大题共8小题,每题5分,共40分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1设集合,那么( )A .BCD【解析】D;易得,所以,应选D2定义域为的四个函数,中,奇函数的个数是( )A .BCD【解析】C;考查根本初等函数和奇函数的概念,是奇函数的为与,应选C3假设复数满足,那么在复平面内,对应的点的坐标是( )A .BCD【解析】C;对应的点的坐标是,应选C4离散型随机变量的分布列为正视图俯视图侧视图第5题图 那么的数学期望 ( )A

2、 .BCD【解析】A;,应选A5某四棱台的三视图如下列图,那么该四棱台的体积是 ( )A .BCD【解析】B;由三视图可知,该四棱台的上下底面边长分别为和的正方形,高为,故,应选B6设是两条不同的直线,是两个不同的平面,以下命题中正确的选项是( )A .假设,那么B假设,那么C假设,那么D假设,那么【解析】D;ABC是典型错误命题,选D7中心在原点的双曲线的右焦点为,离心率等于,在双曲线的方程是 ( )A .BCD【解析】B;依题意,所以,从而,应选B8设整数,集合.令集合 假设和都在中,那么以下选项正确的选项是( )A .,B,C,D,【解析】B;特殊值法,不妨令,那么,应选B如果利用直接法

3、:因为,所以,三个式子中恰有一个成立;,三个式子中恰有一个成立.配对后只有四种情况:第一种:成立,此时,于是,;第二种:成立,此时,于是,;第三种:成立,此时,于是,;第四种:成立,此时,于是,.综合上述四种情况,可得,.二、填空题:此题共7小题,考生作答6小题,每题5分,共30分是否输入输出 结束开始第11题图n(一)必做题(913题)9不等式的解集为_【解析】;易得不等式的解集为.10假设曲线在点处的切线平行于轴,那么_.【解析】;求导得,依题意,所以.11执行如下列图的程序框图,假设输入的值为,那么输出的值为_.【解析】;第一次循环后:;第二次循环后:; 第三次循环后:;第四次循环后:;

4、故输出.12. 在等差数列中,那么_.【解析】;依题意,所以. 或:xy441O13. 给定区域:,令点集是在上取得最大值或最小值的点,那么中的点共确定_条不同的直线.【解析】;画出可行域如下列图,其中取得最小值时的整点为,取得最大值时的整点为,及共个整点.故可确定条不同的直线.二选做题14、15题,考生只能从中选做一题,两题全答的,只计前一题的得分14.(坐标系与参数方程选讲选做题)曲线的参数方程为(为参数),在点处的切线为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,那么的极坐标方程为_.AEDCBO第15题图【解析】;曲线的普通方程为,其在点处的切线的方程为,对应的极坐标方程为,即.

5、15. (几何证明选讲选做题)如图,是圆的直径,点在圆上,延长到使,过作圆的切线交于.假设,那么_.【解析】;依题意易知,所以,又,所以,从而.三、解答题:本大题共6小题,总分值80分,解答须写出文字说明、证明过程或演算步骤.16本小题总分值12分函数,.() 求的值; () 假设,求【解析】();() 因为,所以,所以,所以.17本小题总分值12分 第17题图某车间共有名工人,随机抽取名,他们某日加工零件个数的茎叶图如下列图,其中茎为十位数,叶为个位数.() 根据茎叶图计算样本均值;() 日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间名工人中有几名优秀工人;() 从该车间名

6、工人中,任取人,求恰有名优秀工人的概率.【解析】() 样本均值为; () 由()知样本中优秀工人占的比例为,故推断该车间名工人中有名优秀工人.() 设事件:从该车间名工人中,任取人,恰有名优秀工人,那么.18本小题总分值14分如图1,在等腰直角三角形中,分别是上的点,.COBDEACDOBE图1图2为的中点.将沿折起,得到如图2所示的四棱锥,其中.CDOBEH() 证明:平面;() 求二面角的平面角的余弦值.【解析】() 在图1中,易得连结,在中,由余弦定理可得由翻折不变性可知,所以,所以,理可证, 又,所以平面.() 传统法:过作交的延长线于,连结,因为平面,所以,所以为二面角的平面角.结合

7、图1可知,为中点,故,从而CDOxE向量法图yzB所以,所以二面角的平面角的余弦值为.向量法:以点为原点,建立空间直角坐标系如下列图,那么,所以,设为平面的法向量,那么,即,解得,令,得由() 知,为平面的一个法向量,所以,即二面角的平面角的余弦值为.19本小题总分值14分设数列的前项和为.,.() 求的值;() 求数列的通项公式;() 证明:对一切正整数,有.【解析】() 依题意,又,所以; () 当时, 两式相减得 整理得,即,又 故数列是首项为,公差为的等差数列,所以,所以. () 当时,;当时,; 当时,此时综上,对一切正整数,有.20本小题总分值14分抛物线的顶点为原点,其焦点到直线

8、:的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.() 求抛物线的方程;() 当点为直线上的定点时,求直线的方程;() 当点在直线上移动时,求的最小值.【解析】() 依题意,设抛物线的方程为,由结合,解得. 所以抛物线的方程为. () 抛物线的方程为,即,求导得设,(其中),那么切线的斜率分别为,所以切线的方程为,即,即同理可得切线的方程为因为切线均过点,所以,所以为方程的两组解.所以直线的方程为.() 由抛物线定义可知,所以联立方程,消去整理得由一元二次方程根与系数的关系可得,所以又点在直线上,所以,所以所以当时, 取得最小值,且最小值为.21本小题总分值14分设函数(其中). () 当时,求函数的单调区间;() 当时,求函数在上的最大值.【解析】() 当时, , 令,得, 当变化时,的变化如下表:极大值极小值 右表可知,函数的递减区间为,递增区间为,. (),令,得,令,那么,所以在上递增,所以,从而,所以所以当时,;当时,;所以令,那么,令,那么所以在上递减,而所以存在使得,且当时,当时,所以在上单调递增,在上单调递减.因为,所以在上恒成立,当且仅当时取得“.综上,函数在上的最大值.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服