ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:120KB ,
资源ID:4444837      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4444837.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022-2022学年高中数学章末综合测评3不等式新人教A版必修5.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022-2022学年高中数学章末综合测评3不等式新人教A版必修5.doc

1、章末综合测评(三)不等式(满分:150分时间:120分钟)一、选择题(本大题共12小题,每小题5分,满分60分在每小题给出的四个选项中,只有一项是符合题目要求的)1对于任意实数a,b,c,d,下列四个命题中:若ab,c0,则acbc;若ab,则ac2bc2;若ac2bc2,则ab;若ab0,cd,则acbd.其中真命题的个数是()A1B2C3 D4A若ab,c0时,acd0时,acbd,错,故选A.2直线3x2y50把平面分成两个区域下列各点与原点位于同一区域的是()A(3,4) B(3,4)C(0,3) D(3,2)A当xy0时,3x2y550,则原点一侧对应的不等式是3x2y50,可以验证

2、仅有点(3,4)满足3x2y50.3设A,其中a,b是正实数,且ab,Bx24x2,则A与B的大小关系是()AAB BABCA22,即A2,Bx24x2(x24x4)2(x2)222,即B2,AB.4已知0xya1,则有()Aloga(xy)0 B0loga(xy)1C1loga(xy)2D0xya1,即0xa,0ya,0xya2.又0alogaa22,即loga(xy)2.5不等式2x22x4的解集为()A(,3 B(3,1C3,1 D1,)(,3C由已知得 2x22x421,所以x22x41,即x22x30,解得3x1.6不等式组的解集为()A4,3 B4,2C3,2 DA4x3.7已知点

3、(x,y)是如图所示的平面区域内(阴影部分且包括边界)的点,若目标函数zxay取最小值时,其最优解有无数个,则的最大值是()A BC DA目标函数zxay可化为yxz,由题意知,当a0,T,则()AT0 BT0CT0 DT0B法一:取特殊值,a2,bc1,则T0,知三数中一正两负,不妨设a0,b0,c0,则T.ab0,c20,故T0,y0.若m22m恒成立,则实数m的取值范围是()Am4或m2 Bm2或m4C2m4 D4m0,y0,8(当且仅当时取“”).若m22m恒成立,则m22m8,解之得4m2.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13已知不等式x2ax

4、b0的解集为 方程x2axb0的根为2,3.根据根与系数的关系得:a5,b6.所以不等式为6x25x10,解得解集为.14若正数x,y满足x23xy10,则xy的最小值是 对于x23xy10可得y,xy2(当且仅当x时等号成立).15若关于x、y的不等式组表示的平面区域是一个三角形,则k的取值范围是 (,2)不等式|x|y|2表示的平面区域为如图所示的正方形ABCD及其内部直线y2k(x1)过定点P(1,2),斜率为k,要使平面区域表示一个三角形,则kPDkkPA或kkPC.而kPD0,kPA,kPC2,故0k或k2.16若不等式a在t(0,2上恒成立,则a的取值范围是 ,而yt在(0,2上单

5、调递减,故t2,(当且仅当t2时等号成立),因为,所以21(当且仅当t2时等号成立),故a的取值范围为.三、解答题(本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤)17(本小题满分10分)已知集合A,Bx|log(9x2)log(62x),又ABx|x2axb0,求ab的值解由2x22x3233x,得x2x60,所以3x2,故Ax|3x2由集合B可得:解得1x3,Bx|1x3,ABx|1x2,所以方程x2axb0的两个根为1和2,则a1,b2,所以ab3.18(本小题满分12分)已知函数y的定义域为R.(1)求a的取值范围;(2)解关于x的不等式x2xa2a0.解(1)因为函数

6、y的定义域为R,所以ax22ax10,恒成立当a0时,10恒成立;当a0时,则解得0a1.综上,a的取值范围为0,1.(2)由x2xa2a0得,(xa)x(1a)a,即0a时,ax1a;当1aa,即a时,0,不等式无解;当1aa,即a1时,1axa.综上所述,当0a时,解集为(a,1a);当a时,解集为;当a1时,解集为(1a,a).19(本小题满分12分)设函数f()sin cos ,其中角的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0.若点P(x,y)为平面区域:上的一个动点,试确定角的取值范围,并求函数f()的最小值和最大值解作出平面区域(即三角形区域ABC)

7、,如图中阴影部分所示,其中A(1,0),B(1,1),C(0,1),于是0.又f()sin cos 2sin ,且,故当,即时,f()取得最大值,且最大值等于2;当,即0时,f()取得最小值,且最小值等于1.20(本小题满分12分)已知函数f(x)(xa,a为非零常数).(1)解不等式f(x)a时,f(x)有最小值为6,求a的值解(1)f(x)x,即x,整理得(ax3)(xa)0时,(xa)0,解集为;当a0,解集为.(2)设txa,则xta(t0),f(x)t2a22a22a.当且仅当t,即t时,等号成立,即f(x)有最小值22a.依题意有22a6,解得a1.21(本小题满分12分)经观测,

8、某公路段在某时段内的车流量y(千辆/小时)与汽车的平均速度v(千米/小时)之间有函数关系:y(v0).(1)在该时段内,当汽车的平均速度v为多少时车流量y最大?最大车流量为多少?(精确到0.01)(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?解(1)y11.08.当v,即v40千米/小时时,车流量最大,最大值为11.08千辆/小时(2)据题意有:10,化简得v289v1 6000,即(v25)(v64)0,所以25v64.所以汽车的平均速度应控制在25,64这个范围内22(本小题满分12分)已知函数f(x)2x2x.(1)解不等式f(x);(2)若对任意xR,不等式f(2x)mf(x)6恒成立,求实数m的最大值解(1)设2xt0,则2x,t,则2t25t20,解得t或t2,即2x或2x2,x1或x1.f(x)的解集为x|x1或x1(2)f(x)2x2x,令t2x2x,则t2(当且仅当x0时,等号成立).又f(2x)22x22xt22,故f(2x)mf(x)6可化为t22mt6,即mt,又t2,t24(当且仅当t2,即x0时等号成立).m4.即m的最大值为4.- 8 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服