ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:415KB ,
资源ID:4434366      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4434366.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022届高考数学一轮复习核心素养测评第五章5.2平面向量的坐标运算理含解析北师大版.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022届高考数学一轮复习核心素养测评第五章5.2平面向量的坐标运算理含解析北师大版.doc

1、核心素养测评二十八平面向量的坐标运算(25分钟50分)一、选择题(每小题5分,共35分)1.如图,设O是平行四边形ABCD两条对角线的交点,给出下列向量组:与;与;与;与.其中可作为该平面内其他向量的基底的是()A.B.C.D.【解析】选B.中,不共线;中,不共线.中的两向量共线,因为平面内两个不共线的非零向量构成一组基底,所以选B.2.(2020渭南模拟)已知向量a=(5,2),b=(-4,-3),c=(x,y),若3a-2b+c=0,则c=()A.(-23,-12)B.(23,12)C.(7,0)D.(-7,0)【解析】选A.由题意可得3a-2b+c=3(5,2)-2(-4,-3)+(x,

2、y)=(23+x,12+y)=(0,0),所以解得所以c=(-23,-12).3.已知点M(5,-6)和向量a=(1,-2),若=-3a,则点N的坐标为()A.(2,0)B.(-3,6)C.(6,2)D.(-2,0)【解析】选A.=-3a=-3(1,-2)=(-3,6),设N(x,y),则=(x-5,y+6)=(-3,6),所以即所以N为(2,0).4.(2019三亚模拟)已知平面向量=(1,2),=(3,4),则向量的模是 ()A.B.C.2D.5【解析】选C.因为向量=(1,2),=(3,4),所以=-=(1,2)-(3,4)=(-2,-2),所以|=2.5.(2020大同模拟) 已知向量

3、a=(-1,2),b=(1,3),则|2a-b|=()A.B.2 C.D.10【解析】选C.由已知,易得2a-b=2(-1,2)-(1,3)=(-3,1),所以|2a-b|=.6.已知向量=(k,12),=(4,5),=(-k,10),且A,B,C三点共线,则k的值是()A.-B.C.D.【解析】选A.=-=(4-k,-7),=-=(-2k,-2),因为A,B,C三点共线,所以,共线,所以-2(4-k)=-7(-2k),解得k=-.【变式备选】已知向量m=(+1,1),n=(+2,2),若(m+n)(m-n),则=_.【解析】因为m+n=(2+3,3),m-n=(-1,-1),又(m+n)(m

4、-n),所以(2+3)(-1)=3(-1),解得=0.答案:07.(2019葫芦岛模拟)在ABC中,G为重心,记=a,=b,则=世纪金榜导学号()A.a-bB.a+bC.a-bD.a+b【解析】选A.因为G为ABC的重心,所以=(+)=a+b,所以=+=-b+a+b=a-b.二、填空题(每小题5分,共15分)8.(2020渭南模拟)已知向量a=(2,1),b=(1,-2),若ma+nb=(9,-8)(m,nR),则m-n的值为_.【解析】因为ma+nb=(2m+n,m-2n)=(9,-8),所以所以所以m-n=2-5=-3.答案:-39.已知向量a=(1,2),b=(-2,3),若ma-nb与

5、2a+b共线(其中nR,且n0),则=_.【解析】由a=(1,2),b=(-2,3),得ma-nb=(m+2n,2m-3n),2a+b=(0,7),由ma-nb与2a+b共线,得7(m+2n)=0,则=-2.答案:-210.(2020合肥模拟) 已知向量a=(m,n),b=(1,-2),若|a|=2,a=b(0),则m-n=_.世纪金榜导学号【解析】因为a=(m,n),b=(1,-2),所以由|a|=2,得m2+n2=20,由a=b(0),且,则+的最小值等于()A.2B.4C.8D.16【解析】选C.连接BC,DC,由得x-1+2y=0,即x+2y=1.又xy0,所以+=(x+2y)=4+4

6、+2=8.当且仅当x=,y=时取等号.2.(5分)(2020山东省实验中学模拟)如图RtABC中,ABC=,AC=2AB,BAC平分线交ABC的外接圆于点D,设=a,=b,则向量=()A.a+bB.a+bC.a+bD.a+b【解析】选C.连接BD,DC,设圆的半径为r,在RtABC中,ABC=,AC=2AB,所以BAC=,ACB=,BAC平分线交ABC的外接圆于点D,所以ACB=BAD=CAD=,根据圆的性质BD=CD=AB,又因为在RtABC中,AB=AC=r=OD,所以四边形ABDO为菱形,=+=a+b.3.(5分)(2020南昌模拟)已知O为坐标原点,点C是线段AB上一点,且A(1,1)

7、,C(2,3),|=2|,则向量的坐标是_.【解析】由点C是线段AB上一点,|=2|,得=-2.设点B为(x,y),则(2-x,3-y)=-2(1,2).则解得所以向量的坐标是(4,7).答案:(4,7)4.(10分)(2020滁州模拟)在平面直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在ABC三边围成的区域(含边界)上.世纪金榜导学号(1)若+=0,求|.(2)设=m+n (m,nR),用x,y表示m-n.【解析】 (1)因为+=0,+=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y),所以解得即=(2,2),故|=2.

8、(2)因为=m+n,=(1,2),=(2,1).所以(x,y)=(m+2n,2m+n),即两式相减,得m-n=y-x.5.(10分)已知点O为坐标原点,A(0,2),B(4,6),=t1+t2.世纪金榜导学号(1)求点M在第二或第三象限的充要条件.(2)求证:当t1=1时,不论t2为何实数,A,B,M三点共线.【解析】 (1)=t1+t2=t1(0,2)+t2(4,4)=(4t2,2t1+4t2).点M在第二或第三象限解得t20且t1+2t20.故所求的充要条件为t20且t1+2t20.(2)当t1=1时,由(1)知=(4t2,4t2+2).因为=-=(4,4),=-=(4t2,4t2)=t2(4,4)=t2,所以A,B,M三点共线. - 6 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服