ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:468KB ,
资源ID:4433966      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4433966.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高优指导2021版高考数学一轮复习第七章不等式33二元一次不等式组与简单的线性规划问题考点规范练文北师大版.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高优指导2021版高考数学一轮复习第七章不等式33二元一次不等式组与简单的线性规划问题考点规范练文北师大版.doc

1、考点规范练33二元一次不等式(组)与简单的线性规划问题考点规范练A册第25页基础巩固组1.如果点(1,b)在两条平行直线6x-8y+1=0和3x-4y+5=0之间,则b应取的整数值为() A.2B.1C.3D.0答案:B解析:由题意知(6-8b+1)(3-4b+5)0,即(b-2)0,解得b0)取得最大值的最优解有无穷多个,则a的值是()A.B.C.2D.导学号32470782答案:B解析:直线y=-ax+z(a0)的斜率为-azC或zA=zCzB或zB=zCzA,解得a=-1或a=2.(方法二)目标函数z=y-ax可化为y=ax+z,令l0:y=ax,平移l0,则当l0AB或l0AC时符合题

2、意,故a=-1或a=2.7.若x,y满足且z=y-x的最小值为-4,则k的值为()A.2B.-2C.D.-答案:D解析:如图,作出所表示的平面区域,作出目标函数取得最小值-4时对应的直线y-x=-4,即x-y-4=0.显然z的几何意义为目标函数对应直线x-y+z=0在x轴上的截距的相反数,故该直线与x轴的交点(4,0)必为可行域的顶点,又kx-y+2=0恒过点(0,2),故k=-.故选D.8.已知圆C:(x-a)2+(y-b)2=1,平面区域:若圆心C,且圆C与x轴相切,则a2+b2的最大值为()A.5B.29C.37D.49导学号32470784答案:C解析:由题意,画出可行域,圆心C,且圆

3、C与x轴相切,所以b=1.所以圆心在直线y=1上,求得与直线x-y+3=0,x+y-7=0的两交点坐标分别为A(-2,1),B(6,1),所以a-2,6.所以a2+b2=a2+11,37,所以a2+b2的最大值为37.故选C.9.设x,y满足约束条件则z=2x-y的最大值为.答案:3解析:画出可行域如图所示.画出直线2x-y=0,并平移,当直线经过点A(3,3)时,z取最大值,且最大值为z=23-3=3.10.在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则|OM|的最小值是.导学号32470785答案:解析:由约束条件可画出可行域如图阴影部分所示.由图可知OM的最小值即为点O到

4、直线x+y-2=0的距离,即dmin=.11.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1 kg、B原料2 kg;生产乙产品1桶需耗A原料2 kg,B原料1 kg.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A,B原料都不超过12 kg.求通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润.解:设每天分别生产甲产品x桶,乙产品y桶,相应的利润为z元,则z=300x+400y,在坐标平面内画出该不等式组表示的平面区域及直线300x+400y=0,平移该直线,当平移到经过该平面区域内的点A(4,4)时,相

5、应直线在y轴上的截距达到最大,此时z=300x+400y取得最大值,最大值是z=3004+4004=2 800,即该公司可获得的最大利润是2 800元.能力提升组12.(2015重庆,文10)若不等式组表示的平面区域为三角形,且其面积等于,则m的值为()A.-3B.1C.D.3导学号32470786答案:B解析:如图,要使不等式组表示的平面区域为三角形,则不等式x-y+2m0表示的平面区域为直线x-y+2m=0下方的区域,且-2m-1.这时平面区域为三角形ABC.由解得则A(2,0).由解得则B(1-m,1+m).同理C,M(-2m,0).因为SABC=SABM-SACM=(2+2m),由已知

6、得,解得m=1(m=-30,可作出可行域,由题意知的最小值是,即a=1.14.当实数x,y满足时,1ax+y4恒成立,则实数a的取值范围是.答案:解析:作出题中线性规划条件满足的可行域如图阴影部分所示,令z=ax+y,即y=-ax+z.作直线l0:y=-ax,平移l0,最优解可在A(1,0),B(2,1),C处取得.故由1z4恒成立,可得解得1a.15.设x,y满足约束条件若目标函数z=ax+by(a0,b0)的最大值为8,则ab的最大值为.答案:2解析:画出可行域,如图所示,目标函数变形为l:y=-x+.由已知,得-0,b0,由基本不等式,得2a+4b=84,即ab2(当且仅当2a=4b=4,即a=2,b=1时取“=”),故ab的最大值为2.4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服