ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:201KB ,
资源ID:4433431      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4433431.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022年高考数学一轮复习热点难点精讲精析52数列综合应用.docx)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022年高考数学一轮复习热点难点精讲精析52数列综合应用.docx

1、2022年高考一轮复习热点难点精讲精析:5.2数列综合应用一、数列求和一分组转化求和相关链接1、数列求和应从通项入手,假设无通项,那么先求通项,然后通过对通项变形,转化为等差或等比或可求数列前n项和的数列来求之;2、常见类型及方法(1)anknb,利用等差数列前n项和公式直接求解;(2)anaqn1,利用等比数列前n项和公式直接求解;(3)anbncn或数列bn,cn是等比数列或等差数列,采用分组求和法求an的前n项和.注:应用等比数列前n项和公式时,要注意公比q的取值。例题解析【例】(1)数列:那么其前n项和Sn=_.(2)求数列an的前10项和S10;求数列an的前2k项和S2k.【方法诠

2、释】(1)先求数列的通项公式,再根据通项公式分组求和.(2)把奇数项和偶数项分开求和.解析:(1)答案:(2)S10=(6+16+26+36+46)+(2+22+23+24+25)由题意知,数列an的前2k项中,k个奇数项组成首项为6,公差为10的等差数列,k个偶数项组成首项为2,公比为2的等比数列.S2k=6+16+(10k-4)+(2+22+2k)二错位相减法求和相关链接1、一般地,如果数列是等差数列,是等比数列,求数列的前n项和时,可采用错位相减法;2、用错位相减法求和时,应注意1要善于识别题目类型,特别是等比数列公比为负数的情形;2在写出“与“的表达式时应特别注意将两式“错项对齐以便下

3、一步准确写出的-的表达式。3、利用错位相减法求和时,转化为等比数列求和,假设公比是个参数字母,那么应先对参数加以讨论,一般情况下分等于1和不等于1两种情况分别求和。例题解析例数列满足是首项为1,公比为a的等比数列。1求;2如果a=2,,求数列的前n项和。思路解析:1根据题意得到表达式,再用累加法求通项;2利用错位相减法求和。解答:1由,当n2时,当a=1时,;当a1时,2那么-,得三裂项相消求和相关链接1、利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相

4、等;2、一般情况如下,假设是等差数列,那么,此外根式在分母上可考虑利用有理化因式相消求和。3、常见的拆项公式有:12345例题解析【例】2022大连模拟数列an各项均为正数,其前n项和为Sn,且满足4Sn=(an+1)2,(1)求an的通项公式;(2)设数列bn的前n项和为Tn,求Tn的最小值.【方法诠释】(1)利用Sn+1-Sn=an+1寻找an+1与an的关系.(2)先用裂项法求Tn,再根据数列Tn的单调性求最小值.解析:(1)因为(an+1)2=4Sn,所以所以即2(an+1+an)=(an+1+an)(an+1-an).因为an+1+an0,所以an+1-an=2,即an为公差等于2的

5、等差数列.由(a1+1)2=4a1,解得a1=1,所以an=2n-1.(2)由(1)知Tn=b1+b2+bnTn+1Tn,数列Tn为递增数列,Tn的最小值为四数列求和的综合应用例设数列满足,1求数列的通项公式;2设,求数列的前n项和;3假设思路解析:1通过条件递推变形,构造等比数列或用迭代法求解;2利用错位相减法求;3利用反证法证明。解答:1方法一:由题意,当a1时,当a=1时,仍满足上式。数列的通项公式为。方法二:23由1知。假设,那么。,。由对任意成立,知c0.下证c1.用反证法。方法一:假设c1.由函数f(x)=的函数图象知,当n趋于无穷大时,趋于无穷大。不能对恒成立,导致矛盾。c1,

6、o0),因此,历年所交纳的储藏金数目是一个公差为d 的等差数列。与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利。这就是说,如果固定利率为r(r0),那么,在第n年末,第一年所交纳的储藏金就变为,第二年所交纳的储藏金就变为以表示到第n年所累计的储藏金总额。1写出与n2的递推关系式;2求证:,其中是一个等比数列,是一个等差数列。思路解析:1中关系式容易列出;2中利用与,与的关系以此类推,逐步得的表达式,再利用错位相减法求得,即不难得出与解答:1由题意可得:2反复使用上述关系式,得在式两端同乘1+r,得四数列与解析几何、不等式的综合应用例1知曲线从点向曲线引斜率为的切线,切点为1求

7、数列的通项公式;2证明:.解答:1设直线:,联立得,那么,舍去,即,2证明:由于,可令函数,那么,令,得,给定区间,那么有,那么函数在上单调递减,即在恒成立,又,那么有,即.注:数列、解析几何、不等式是高考的重点内容,将三者综合在一起,强强联合命题大型综合题是历年高考的热点和重点。数列是特殊的函数,以数列为背景的不等式证明问题及以函数作为背景的数列的综合问题表达了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,而一直成为高考命题者的首选。例2点1,是函数且的图象上一点,等比数列的前项和为,数列的首项为,且前项和满足=+.1求数列和的通项公式;2假设数列前项和为,问的最小正整数是多少解答:1, , .又数列成等比数列, ,所以 ;又公比,所以 ;又, ;数列构成一个首相为1公差为1的等差数列, , 当, ;();2; 由得,满足的最小正整数为112.注:数列与函数的综合问题主要有以下两类:函数条件,解决数列问题。此类问题一般利用函数的性质、图象研究数列问题;数列条件,解决函数问题。解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服