ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:80KB ,
资源ID:4433405      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4433405.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022年高考数学一轮复习热点难点精讲精析42数系的扩充与复数的引入.docx)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022年高考数学一轮复习热点难点精讲精析42数系的扩充与复数的引入.docx

1、2022年高考一轮复习热点难点精讲精析:4.2数系的扩充与复数的引入一、复数的有关概念及复数的几何意义相关链接1、复数的分类2、处理有关复数概念的问题,首先要找准复数的实部与虚部假设复数为非标准的代数形式,那么应通过代数运算化为代数形式,然后根据定义解题。方法提示:1.复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部、虚部满足的方程(不等式)组即可.2.求复数模的常规思路是利用复数的有关运算先求出复数z,然后利用复数的模长公式求解.3复数的几何意义可以让我们运用数形结合思想把复数、向量、解析几何有机的结合在一起,能够更加灵活的解决问题

2、.高考中对复数几何意义的考查主要集中在复数对应点的位置、加减法的几何意义、模的意义等.例题解析例1当实数m为何值时,z=lg(m2-2m-2)+(m2+3m+2)i(1) 纯虚数;2为实数;3对应的点在复平面内的第二象限内。思路解析:根据复数分类的条件和复数的几何意义求解。解答:根据复数的有关概念,转化为实部和虚局部别满足的条件求解。1假设z为纯虚数,那么解得m=32假设z为实数,那么解得m=-1或m=-23假设z的对应点在第二象限,那么解得-1m1-或1+m3.即1m=3时,z为纯虚数;2m=-1或m=-2时,z为实数;3-1m1-或1+m3时,z的对应点在第二象限内。例2复数在复平面上对应

3、的点位于( )()第一象限 (B)第二象限(C)第三象限 (D)第四象限 思路解析:化简z为代数形式,确定其实部、虚部.解答:选.因为所以所以z对应的点位于第一象限.二、复数相等相关链接1、a+bi=c+di.2、利用复数相等可实现复数问题实数问题的转化。解题时要把等号两边的复数化为标准的代数形式。注:对于复数z,如果没有给出代数形式,可设z= a+bi(a,bR)。例题解析例集合M=a+3+b2-1i,8,集合N=3,a2-1+(b+2)同时满足MNM,MN,求整数a,b思路解析:判断两集合元素的关系列方程组分别解方程组检验结果是否符合条件。解答:或或由得a=-3,b=2,经检验,a=-3,

4、b=-2不合题意,舍去。a=-3,b=2由得a=3, b=-2.又a=-3,b=-2不合题意,a=3,b=-2;由得,此方程组无整数解。综合得a=-3,b=2或a=3,b=-2。三、复数的代数运算相关链接1、(1)复数的加法、减法、乘法运算可以类比多项式运算,除法关键是分子分母同乘以分母的共轭复数,注意要把i的幂写成最简形式.(2)记住以下结论,可提高运算速度:(1i)2=2i;i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(nN).2、复数的四那么运算类似于多项式的四那么运算,此时含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可,但要注意把i的幂写成最简

5、单的形式,在运算过程中,要熟透i的特点及熟练应用运算技巧。例题解析例1z1,z2为复数,(3i)z1为实数,且|z2|求z2.思路解析:可不设代数形式利用整体代换的思想求解.z1z2(2i),(3i)z1z2(2i)(3i)z2(55i)R,|z2|z2(55i)|50,z2(55i)50,例2解答:注:复数的综合运算中会涉及模、共轭及分类等,求z时要注意是把z看作一个整体还是设为代数形式应用方程思想;当z是实数或纯虚数时注意常见结论的应用.四、复数加减法的几何意义例如图,平行四边形OABC,顶点O、A、C分别表示0,3+2i,-2+4i,试求:1表示的复数,表示的复数;2对角线所表示的复数。思路解析:求某个向量对应的复数,只要求出向量的起点和终点对应的复数即可。解答:1=-,表示的复数为-3-2i.=,所表示的复数为-3-2i。2=-,所表示的复数为(3+2i)-(-2+4i)=5-2i.注:解决这类题目是利用复数a+bi(a,bR)与复平面内以原点为起点的向量之间一一对应的关系,相等的向量表示同一复数,然后借助于向量运算的平行四边形法那么和三角形法那么进行求解。复数问题实数化是解决复数问题最根本也是最重要的思想方法,桥梁是设z=x+yi,依据是复数相等的充要条件。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服