ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:708.04KB ,
资源ID:4433138      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4433138.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2023版高考数学一轮复习第九章立体几何9.7.1利用空间向量求线线角与线面角练习理北师大版.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2023版高考数学一轮复习第九章立体几何9.7.1利用空间向量求线线角与线面角练习理北师大版.doc

1、9.7.1 利用空间向量求线线角与线面角核心考点精准研析 考点一异面直线所成的角 1.(2018全国卷)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.C.D.2.在直三棱柱ABC-A1B1C1中,BCA=90,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.3.在三棱柱ABC-A1B1C1中,侧棱A1A底面ABC,AC=1,AA1=2,BAC=90,若AB1与直线A1C的夹角的余弦值是,则棱AB的长度是_.4.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,

2、E是棱CC1的中点,=,若异面直线D1E和A1F所成角的余弦值为,则的值为_.【解析】1.选C.以D为坐标原点,DA,DC,DD1所在直线分别为x,y,z轴建立空间直角坐标系,则D(0,0,0),A(1,0,0),D1(0,0,),B1(1,1,),所以=(-1,0,),=(1,1,),设异面直线AD1与DB1所成角为,则cos =|cos􀎮,􀎯|=.2.选C.建立如图所示空间直角坐标系.设BC=CA=CC1=2,则可得A(2,0,0),B(0,2,0),M(1,1,2),N(1,0,2),所以=(1,-1,2),=(-1,0,2).所以cos=.3.如图建

3、立空间直角坐标系.设AB=a,则A(0,0,0),B1(a,0,2),A1(0,0,2),C(0,1,0),所以=(a,0,2),=(0,1,-2),所以=,解得a=1,所以棱AB的长度是1.答案:14.以D为原点,以DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,正方体的棱长为2,则A1,D1,E,A ,所以=,=+=+=+=,所以cos=,解得=(=-舍去).答案:求异面直线所成的角的两个关注点(1)用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来求解的.(2)由于两异面直线所成角的范围是0,两方向向量的夹角的范围是(0,),所以要注意二者的区别与联系,应有co

4、s =|cos |.【解析】选C.由于BCA=90,三棱柱为直三棱柱,且BC=CA=CC1,可将三棱柱补成正方体.建立如图所示空间直角坐标系.设正方体棱长为2,则可得A(0,0,0),B(2,2,0),M(1,1,2),N(0,1,2),所以=(-1,-1,2),=(0,1,2).所以cos=.考点二直线与平面所成的角【典例】(2018全国卷)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把DFC折起,使点C到达点P的位置,且PFBF.(1)证明:平面PEF平面ABFD.(2)求DP与平面ABFD所成角的正弦值.【解题导思】序号联想解题(1)要证面面垂直,先想到判定定

5、理(2)要求线面角,考虑用向量法,想到如何建立空间坐标系.【解析】(1)由已知可得,BFPF,BFEF,PFEF=F,所以BF平面PEF.又BF平面ABFD,所以平面PEF平面ABFD.(2)方法一:作PHEF,垂足为H.由(1)得,PH平面ABFD.以H为坐标原点,的方向为y轴正方向,设正方形ABCD的边长为2,建立如图所示的空间直角坐标系H-xyz.由(1)可得,DEPE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PEPF.可得PH=,EH=.则H(0,0,0),P,D,=,=为平面ABFD的一个法向量.设DP与平面ABFD所成角为,则sin =.所以DP与平面ABFD所成

6、角的正弦值为.方法二:因为PFBF,BFED,所以PFED,又PFPD,EDDP=D,所以PF平面PED,所以PFPE,设AB=4,则EF=4,PF=2,所以PE=2,过P作PHEF交EF于H点,由平面PEF平面ABFD,所以PH平面ABFD,连接DH,则PDH即为直线DP与平面ABFD所成的角,由PEPF=EFPH,所以PH=,因为PD=4,所以sinPDH=,所以DP与平面ABFD所成角的正弦值为.利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其

7、余角就是斜线和平面所成的角.如图,四棱柱ABCD-A1B1C1D1的底面为菱形,BAD=120,AB=2,E,F分别为CD,AA1的中点.(1)求证:DF平面B1AE.(2)若AA1底面ABCD,且直线AD1与平面B1AE所成线面角的正弦值为,求AA1的长.【解析】(1)设G为AB1的中点,连接EG,GF,因为FG􀱀A1B1,又DE􀱀A1B1,所以FG􀱀DE,所以四边形DEGF是平行四边形,所以DFEG,又DF平面B1AE,EG平面B1AE,所以DF平面B1AE. (2)因为ABCD是菱形,且ABC=60,所以ABC是等边三角形.取BC中点M,则AMAD,因为AA1平面ABCD,所以AA1AM,AA1AD,建立如图所示的空间直角坐标系A-xyz,令AA1=t(t0),则A(0,0,0),E,0,B1(,-1,t),D1(0,2,t),=,0, =(,-1,t),=(0,2,t),设平面B1AE的一个法向量为n=(x,y,z),则n=(x+y)=0且n=x-y+tz=0,取n=(-t,t,4),设直线AD1与平面B1AE所成角为,则sin =,解得t=2,故线段AA1的长为2.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服