ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:668KB ,
资源ID:4432997      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4432997.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2023版高考数学一轮复习选修4-5不等式选讲2证明不等式的基本方法练习理北师大版.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2023版高考数学一轮复习选修4-5不等式选讲2证明不等式的基本方法练习理北师大版.doc

1、证明不等式的根本方法考点一综合法证明不等式【典例】(2023全国卷)a,b,c为正数,且满足abc=1,证明:(1)+a2+b2+c2.(2)(a+b)3+(b+c)3+(c+a)324.【证明】(1)因为a2+b22ab,b2+c22bc,c2+a22ac,又abc=1,故有a2+b2+c2ab+bc+ca=+.当且仅当a=b=c时,取等号.所以+a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)33=3(a+b)(b+c)(a+c)3(2)(2)(2)=24.当且仅当a=b=c时,取等号.所以(a+b)3+(b+c)3+(c+a)324.1

2、.综合法证明不等式,要分析清与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰中选择不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和根本不等式是最常用的.在运用这些性质时,要注意性质和不等式成立的条件.考点二分析法证明不等式【典例】函数f(x)=|x+1|.(1)求不等式f(x)f(a)-f(-b).【解题导思】联想解题(1)根据绝对值的性质去绝对值,解不等式(2)用综合法证明不等式不好证明时,考虑分析法证明【解析】(1)由题意,得|x+1|2x+1|-1,当x-1时,不等式可化为-x-1-2x-2,解得x-1;当-1x-时,不等式可化为x+1-2x-2,此时不等

3、式无解;当x-时,不等式可化为x+11.综上,M=x|x1.(2)因为f(a)-f(-b)=|a+1|-|-b+1|a+1-(-b+1)|=|a+b|,所以要证f(ab)f(a)-f(-b),只需证|ab+1|a+b|,即证|ab+1|2|a+b|2,即证a2b2+2ab+1a2+2ab+b2,即证a2b2-a2-b2+10,即证(a2-1)(b2-1)0.因为a,bM,所以a21,b21,所以(a2-1)(b2-1)0成立,所以原不等式成立.1.当要证的不等式不知从何入手时,可考虑用分析法去证明,特别是对于条件简单而结论复杂的题目往往更为有效.2.分析法证明不等式的依据也是不等式的根本性质、

4、的重要不等式和逻辑推理的根本理论.3.分析法证明不等式的思维方向是“逆推,即由待证的不等式出发, 逐步寻找使它成立的充分条件(执果索因),最后得到的充分条件是(或已证)的不等式.abc,且a+b+c=0,求证:bc且a+b+c=0,知a0,c0.要证a,只需证b2-ac3a2.因为a+b+c=0,只需证b2+a(a+b)0,只需证(a-b)(2a+b)0,只需证(a-b)(a-c)0.因为abc,所以a-b0,a-c0,所以(a-b)(a-c)0显然成立,故原不等式成立.考点三比拟法证明不等式 命题精解读考什么:(1)考查数、代数式的大小比拟(2)考查学生的数学运算、逻辑推理等核心素养和转化化

5、归、放缩等数学思想方法怎么考:与根本初等函数、数列、三角函数等数学知识交叉考查大小比拟问题新趋势:以不等式为载体,与函数、数列、三角函数等结合考查为主学霸好方法比拟法证明不等式的思路:当题目中出现多项式的大小比拟时,一般采用作差法;当题目中出现正的单项式大小比拟时,一般采用作商法作差法【典例】当p,q都是正数且p+q=1时,试比拟(px+qy)2与px2+qy2的大小.【解析】(px+qy)2-(px2+qy2)=p2x2+q2y2+2pqxy-(px2+qy2)=p(p-1)x2+q(q-1)y2+2pqxy.因为p+q=1,所以p-1=-q,q-1=-p.所以(px+qy)2-(px2+qy2)=-pq(x2+y2-2xy)=-pq(x-y)2.因为p,q为正数,所以-pq(x-y)20,所以(px+qy)2px2+qy2.当且仅当x=y时,不等式中等号成立.作商法【典例】a,bR+,证明:aabbabba.【证明】因为=,当ab时,1,a-b0,故1;当a=b时,=1,a-b=0,故=1;当ab时,1,a-b1.综上,aabbabba.- 4 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服