ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:136KB ,
资源ID:4393130      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4393130.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(2022-2022学年高中数学课时分层作业1两个基本计数原理含解析苏教版选修.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022-2022学年高中数学课时分层作业1两个基本计数原理含解析苏教版选修.doc

1、 课时分层作业(一) 两个基本计数原理 (建议用时:60分钟) [基础达标练] 一、选择题 1.有5列火车停在某车站并排的5条轨道上,若火车A不能停在第1道上,则5列火车的停车方法共有(  ) A.96种           B.24种 C.120种 D.12种 A [先排第1道,有4种排法,第2,3,4,5道各有4,3,2,1种,由分步乘法计数原理知共有4×4×3×2×1=96种.] 2.如图,一条电路从A处到B处接通时,可构成通路的条数为(  ) A.8条 B.6条 C.5条 D.3条 B [从A到B接通,分两步:第一步有2种方法,第二步有3种方法,所以可构成通

2、路的条数为2×3=6条.选B.] 3.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为(  ) A.40 B.16 C.13 D.10 C [分两类情况讨论:第一类,直线a分别与直线b上的8个点可以确定8个不同的平面;第二类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.] 4.给一些书编号,准备用3个字符,其中首字符用A,B,后两个字符用a,b,c(允许重复),则不同编号的书共有(  ) A.8本 B.9本 C.12本 D.18本 D [完成这件事可以分为三步,第一步确定首字符

3、共有2种方法;第二步确定第二个字符,共有3种方法;第三步确定第三个字符,共有3种方法.所以不同编号的书共有2×3×3=18(本),故选D.] 5.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax+By=0的系数A,B的值,则形成的不同直线有(  ) A.18条 B.20条 C.25条 D.10条 A [第一步,取A的值,有5种取法;第二步,取B的值,有4种取法,其中当A=1,B=2时与A=2,B=4时是相同的方程;当A=2,B=1时与A=4,B=2时是相同的方程,故共有5×4-2=18条.] 二、填空题 6.设集合A中有3个元素,集合B中有2个元素,可建立A→B的映射

4、的个数为________. 8 [建立映射,即对于A中的每一个元素,在B中都有一个元素与之对应,故由分步计数原理得映射有2×2×2=8(个).] 7.用4种不同的颜色涂入如图所示的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂色方法共有______种. A B C D 72 [按A,B,C,D顺序涂色,共有4×3×2×3=72种方法.] 8.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有________种. 20 [分三类:若甲在周一,则乙丙有4×3=12种排法;

5、若甲在周二,则乙丙有3×2=6种排法; 若甲在周三,则乙丙有2×1=2种排法. 所以不同的安排方法共有12+6+2=20种.] 三、解答题 9.已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问: (1)P可表示平面上多少个不同的点? (2)P可表示平面上多少个第二象限的点? (3)P可表示多少个不在直线y=x上的点? [解] (1)确定平面上的点P(a,b)可分两步完成: 第一步确定a的值,共有6种确定方法; 第二步确定b的值,也有6种确定方法. 根据分步计数原理,得知P可表示平面上的点数是6×6=36(个). (2)确定第二象

6、限的点,可分两步完成:第一步确定a,由于a<0,所以有3种确定方法;第二步确定b,由于b>0,所以有2种确定方法. 由分步计数原理,得到第二象限的点的个数是3×2=6(个). (3)点P(a,b)在直线y=x上的充要条件是a=b. 因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个. 结合(1)得,不在直线y=x上的点共有36-6=30(个). 10.由0,1,2,3这四个数字,可组成多少个? (1)无重复数字的三位数? (2)可以有重复数字的三位数? [解] (1)0不能做百位数字,所以百位数字有3种选择,十位数字有3种选择,个位数字有2种选择,所以

7、无重复数字的三位数共有3×3×2=18(个). (2)百位数字有3种选择,十位数字有4种选择,个位数字也有4种选择. 由分步计数原理知,可以有重复数字的三位数共有3×4×4=48(个). [能力提升练] 1.一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有(  ) A.6种 B.8种 C.36种 D.48种 D [由题意知在A点可先参观区域1,也可先参观区域2或3,每种选法中可以按逆时针参观,也可以按顺时针参观,所以第一步可以从6个路口任选一个,有6种走法,参观完第一个区域后,选择下一步走法,有4种走法,参观完第二个区域后,只剩下最后一个

8、区域,有2种走法,根据分步乘法计数原理,共有6×4×2=48种不同的参观路线.] 2.某市汽车牌照号码(由4个数字和1个字母组成)可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复).某车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码所有可能的情况有(  ) A.180种 B.360种 C.720种 D.960种 D [分五步完成,第i步取第i个号码(i=1,2,3,4,5).由分步乘法计数原理,可得车牌号码共有5×3×4×4×4=960种.] 3.将

9、1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,如图是一种填法,则不同的填写方法共有___________种. 1 2 3 3 1 2 2 3 1 12 [假设第一行为1,2,3,则第二行第一列可为2或3,此时其他剩余的空格都只有一种填法,又第一行有3×2×1=6(种)填法. 故不同的填写方法共有6×2=12(种).] 4.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有________对. 48 [与正方体的一个面上的一条对角线成60°角的对角线有8条,故共有8对,正方体的12条面对角线共有96对,且每对均重复计算一次,故共有=48对

10、.] 5.(1)从5种颜色中选出三种颜色,涂在一个四棱锥的五个顶点上,每个顶点上染一种颜色,并使同一条棱上的两端点异色,求不同的染色方法总数. (2)从5种颜色中选出四种颜色,涂在一个四棱锥的五个顶点上,每个顶点上染一种颜色,并使同一条棱上的两端点异色,求不同的染色方法总数. [解] (1)如图,由题意知,四棱锥SABCD的顶点S,A,B所染色互不相同,则A,C必须颜色相同,B,D必须颜色相同,所以,共有5×4×3×1×1=60(种). (2)法一 由题意知,四棱锥SABCD的顶点S,A,B所染色互不相同,则A,C可以颜色相同,B,D可以颜色相同,并且两组中必有一组颜色相同.所以,先从

11、两组中选出一组涂同一颜色,有2种选法(如:B,D颜色相同);再从5种颜色中,选出四种颜色涂在S,A,B,C四个顶点上,有5×4×3×2=120(种)涂法.根据分步计数原理,共有2×120=240(种)不同的涂法. 法二 分两类. 第一类,C与A颜色相同.由题意知,四棱锥SABCD的顶点S,A,B所染色互不相同,它们共有5×4×3=60(种)染色方法.共有5×4×3×1×2=120(种)方法; 第二类,C与A颜色不同.由题意知,四棱锥SABCD的顶点S,A,B所染色互不相同,它们共有5×4×3=60(种)染色方法.共有5×4×3×2×1=120(种)方法. 由分类计数原理,共有120+120=240(种)不同的方法.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服