1、课时分层作业(十七)概率的基本性质(建议用时:60分钟)基础达标练一、选择题1给出事件A与B的关系示意图,如图所示,则()AABBABCA与B互斥DA与B互为对立事件C由互斥事件的定义知,A、B互斥2甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()ABC DA由题意甲不输即甲胜或甲、乙和棋,二者为互斥事件,故甲不输的概率为.3把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A对立事件B不可能事件C互斥但不对立事件D以上答案都不对C“甲分得红牌”与“乙分得红牌”不会同时发生,但分得红牌的还有可能是丙或丁
2、,所以这两事件互斥但不对立4从1,2,3,9中任取两数,其中:恰有一个偶数和恰有一个奇数;至少有一个奇数和两个都是奇数;至少有一个奇数和两个都是偶数;至少有一个奇数和至少有一个偶数则在上述事件中,是对立事件的是()ABCDC从19中任取两数,有以下三种情况,(1)两个均为奇数;(2)两个均为偶数;(3)一个奇数与一个偶数至少有一个奇数是(1)(3)种情况的并事件,与两个都是偶数对立5掷一枚骰子的试验中,出现各点的概率均为.事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A(表示事件B的对立事件)发生的概率为()ABC DC由题意知,表示“大于或等于5的点数出
3、现”,事件A与事件互斥,由概率的加法计算公式可得P(A)P(A)P().二、填空题6在掷骰子的试验中,可以得到以下事件:A出现1点;B出现2点;C出现3点;D出现4点;E出现5点;F出现6点;G出现的点数不大于1;H出现的点数小于5;I出现奇数点;J出现偶数点请根据这些事件,判断下列事件的关系:(1)B_H;(2)D_J;(3)E_I;(4)A_G.当事件B发生时,H必然发生,故BH;同理DJ,EI,而事件A与G相等,即AG.7抛掷一枚骰子两次,若至少有一个1点或2点的概率为,则没有1点且没有2点的概率是_记事件A为“没有1点且没有2点”,B为“至少有一个1点或2点”,则A与B是互斥事件,且A
4、与B是对立事件,故P(A)1P(B)1.8给出四对事件:某人射击1次,“射中7环”与“射中8环”;甲、乙两人各射击1次,“甲射中7环”与“乙射中8环”;甲、乙两人各射击1次,“两人均射中目标”与“两人均没有射中目标”;甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中目标,但乙未射中目标”其中是互斥事件的有_对2某人射击1次,“射中7环”与“射中8环”这两个事件不可能同时发生,故是互斥事件;甲、乙两人各射击1次,“甲射中7环”与“乙射中8环”可能同时发生,故不是互斥事件;甲、乙两人各射击1次,“两人均射中目标”与“两人均没有射中目标”这两个事件不可能同时发生,故是互斥事件;甲、乙两人各射击
5、1次,“至少有1人射中目标”与“甲射中目标,但乙未射中目标”,前者包含后者,故不是互斥事件综上可知,是互斥事件,故共有2对事件是互斥事件三、解答题9(1)某班派两名学生参加乒乓球比赛,他们取得冠军的概率分别为和,则该班取得乒乓球比赛冠军的概率为.上述说法正确吗?为什么?(2)某战士在一次射击训练中,击中环数大于7的概率为0.6,击中环数是6或7或8的概率为0.3,则该战士击中环数大于5的概率为0.60.30.9.上述说法是否正确?请说明理由解(1)正确因为两人分别取得冠军是互斥的,所以两人至少有一人取得冠军,该班就取得乒乓球比赛冠军,所以该班取得乒乓球比赛冠军的概率为.(2)不正确因为该战士击
6、中环数大于7和击中环数为6或7或8不是互斥事件,所以不能用互斥事件的概率加法公式计算10黄种人群中各种血型的人所占的比例见下表:血型ABABO该血型的人所占的比例/%2829835已知同种血型的人可以互相输血,O型血可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血小明是B型血,若他因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解对任何一个人,其血型为A,B,AB,O型血的事件分别记为A,B,C,D,它们是互斥的由已知,有P(A)0.28,P(B)0.29,P(C)0.08,P(D)0.3
7、5.(1)因为B,O型血可以输给B型血的人,所以“任找一个人,其血可以输给小明”为事件BD,根据概率的加法公式,得P(BD)P(B)P(D)0.290.350.64.(2)由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小明”为事件AC,根据概率的加法公式,得P(AC)P(A)P(C)0.280.080.36.能力提升练1若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)2a,P(B)4a5,则实数a的取值范围是()ABC DD由题意可得即解得 a.2某小组有三名男生和两名女生,从中任选两名去参加比赛,则下列各对事件中是互斥事件的有()恰有一名男生和全是男生;至少有一
8、名男生和至少有一名女生;至少有一名男生和全是男生;至少有一名男生和全是女生ABCDD是互斥事件恰有一名男生的实质是选出的两名同学中有一名男生和一名女生,它与全是男生不可能同时发生;不是互斥事件;不是互斥事件;是互斥事件至少有一名男生与全是女生不可能同时发生3打靶3次,事件Ai表示“击中i发”,其中i0,1,2,3,那么AA1A2A3表示的含义是_击中1发,2发或3发AA1A2A3表示的含义是A1、A2、A3这三个事件中至少有一个发生,即可能击中1发,2发或3发44位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为_由题意知4位同学各自在周六、周日两天中任
9、选一天参加公益活动,其中4位同学都选周六的概率为,4位同学都选周日的概率为,故周六、周日都有同学参加公益活动的概率P1.5袋中有红球、黑球、黄球、绿球若干,从中任取一球,得到红球的概率为,得到黑球或黄球的概率为,得到黄球或绿球的概率为,求得到黑球、得到黄球、得到绿球的概率分别是多少解记“得到红球”为事件A,“得到黑球”为事件B,“得到黄球”为事件C,“得到绿球”为事件D,事件A,B,C,D显然彼此互斥,则由题意可知,P(A),P(BC)P(B)P(C),P(CD)P(C)P(D).由事件A和事件BCD是对立事件可得P(A)1P(BCD)1P(B)P(C)P(D),即P(B)P(C)P(D)1P(A)1.联立可得P(B),P(C),P(D).即得到黑球、得到黄球、得到绿球的概率分别是,.