1、4.3 三角恒等变换 考点一三角函数式的化简求值 1.(2019全国卷)已知 ,2sin 2=cos 2+1,则sin =()A. B. C. D. 2.计算: =_.3.化简: =_.【解析】1.选B.由2sin 2=cos 2+1得4sin cos =2cos2,即2sin =cos ,结合sin2+cos2=1,解得sin = .2. = = = = =2 .答案:2 3.原式= = = =1.答案:11.三角函数式的化简要遵循“三看”原则2.三角函数式化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂.在三角函数式的化简中“次降角升”和“次升角降”是基本的规律,根号中含有三角函数式
2、时,一般需要升次.【一题多解】倍角降次解T3,原式= = = = =1.三角形法解T1,因为 ,所以sin 0,cos 0,由2sin 2=cos 2+1得4sin cos =2cos2,即2sin =cos ,tan = ,画直角三角形如图,不妨设角对边为1,邻边为2,则斜边为 ,sin = . 考点二条件求值问题 命题精解读考什么:(1)给角求值,给值求值,给值求角等.(2)考查逻辑推理,数学运算等核心素养,以及转化与化归的思想.怎么考:诱导公式与三角函数性质结合考查求三角函数值,角的值等.学霸好方法条件求值的四个必备结论(1)降幂公式:cos2= ,sin2= .(2)升幂公式:1+co
3、s 2=2cos2,1-cos 2=2sin2.(3)公式变形:tan tan =tan()(1tan tan ).(4)辅助角公式:asin x+bcos x= sin(x+) 其中sin = ,cos = 给角求值【典例】(2019沈阳四校联考)化简: - =_.【解析】 - = = = =4.答案:4给角求值如何求解?提示:(1)观察角,分析角之间的差异,巧用诱导公式或拆分.(2)观察名,尽可能使函数统一名称.(3)观察结构,利用公式,整体化简. 给值求值【典例】1.(2018全国卷)已知sin +cos =1,cos +sin =0,则sin(+)=_.2.(2018全国卷)已知tan
4、 = ,则tan =_.【解析】1.由sin +cos =1与cos +sin =0分别平方相加得sin2+2sin cos +cos2+cos2+2cos sin +sin2 =1,即2+2sin cos +2cos sin =1,所以sin(+)=- .答案:- 2.因为tan =tan = ,所以 = ,解得tan = .答案: 给值求值问题如何求解?提示:(1)化简所求式子.(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手).(3)将已知条件代入所求式子,化简求值. 给值求角【典例】(2020长春模拟)已知sin = ,sin(-)=- ,均为锐角,则角值是_.【解析】因为
5、,均为锐角,所以- - .又sin(-)=- ,所以cos(-)= .又sin = ,所以cos = ,sin =sin-(-)=sin cos(-)-cos sin(-)= - = ,所以= .答案: 如何选取合适的三角函数求角?提示:(1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦或余弦函数.若角的范围是 ,选正、余弦函数皆可;若角的范围是(0,),选余弦函数较好;若角的范围为 ,选正弦函数较好.(3)由角的范围,结合所求三角函数值写出要求的角.1.化简: =_.【解析】原式= = = .答案: 2.(2019福州模拟)已知A,B均为钝角,sin2 +cos = ,且si
6、n B= ,则A+B=()A. B. C. D. 【解析】选C.因为sin2 +cos = ,所以 + cos A- sin A= ,即 - sin A= ,解得sin A= .因为A为钝角,所以cos A=- =- =- .由sin B= ,且B为钝角,得cos B=- =- =- .所以cos(A+B)=cos Acos B-sin Asin B= - = .又A,B都为钝角,即A,B ,所以A+B(,2),所以A+B= .3.(2020佛山模拟)已知cos = ,(-,0),则cos =()A.- B.- C. D. 【解析】选A.因为cos = ,(-,0),所以sin =- =- ,
7、所以cos =cos cos +sin sin = + =- .1.(2019贵阳模拟)sin415-cos415=()A. B.- C. D.- 【解析】选D.sin415-cos415=(sin215-cos215)(sin215+cos215)=sin215-cos215=-cos 30=- .2.定义运算 =ad-bc.若cos = , = ,0 ,则=_.【解析】由已知得sin cos -cos sin =sin(-)= .又0 ,所以0- ,所以cos(-)= = ,而cos = ,所以sin = ,于是sin =sin-(-)=sin cos(-)-cos sin(-)= - =
8、 ,所以= .答案: 考点三三角恒等变换的综合应用 【典例】1.如图,在矩形OABC中,AB=1,OA=2,以B为圆心,BA为半径在矩形内部作弧,点P是弧上一动点,PMOA,垂足为M,PNOC,垂足为N,求四边形OMPN的周长的最小值.【解析】连接BP,设CBP=,其中0 ,则PM=1-sin ,PN=2-cos ,则周长C=6-2(sin +cos )=6-2 sin ,因为0 ,所以 + 0)求周期;根据自变量的范围确定x+的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为求二次函数的最值;根据正、余弦函数的单调区间列不等式求函数y=Asi
9、n(x+)+b或y=Acos(x+)+b的单调区间.1.如图是半径为1的半圆,且四边形PQRS是半圆的内接矩形,设SOP=,求为何值时矩形的面积最大,并求出最大值.【解析】因为SOP=,所以PS=sin ,SR=2cos ,故S矩形PQRS=SRPS=2cos sin =sin 2,故当= 时,矩形的面积有最大值1.2.(2020合肥模拟)已知函数f(x)=sin2x-sin2 ,xR.(1)求f(x)的最小正周期.(2)求f(x)在区间 上的最大值和最小值.【解析】(1)由已知得f(x)= - = - cos 2x= sin 2x- cos 2x= sin .所以f(x)的最小正周期T= =.(2)由(1)知f(x)= sin .因为- x ,所以- 2x- ,所以当2x- =- ,即x=- 时,f(x)有最小值- ;当2x- = ,即x= 时,f(x)有最大值 .所以f(x)在 上的最大值为 ,最小值为- .- 9 -