1、课时作业10等差数列的前n项和 根底稳固(25分钟,60分)一、选择题(每题5分,共25分)1等差数列an满足a2a44,a3a510,那么它的前10项和S10()A138B135C95 D23解析:设等差数列an的首项a1,公差为d,那么即由得2d6,d3.a2a42a14d2a1434,a14.S1010(4)34013595.答案:C2在等差数列an中,a61,那么数列an的前11项和S11等于()A7 B9C11 D13解析:S1111a611.应选C.答案:C3等差数列an中a11,Sn为其前n项和,且S4S9,a4ak0,那么实数k等于()A3 B6C10 D11解析:因为等差数列
2、an中a11,Sn为其前n项和,且S4S9,所以S9S4a5a6a7a8a90,所以5a70,即a70,由等差数列的性质可得a4a102a70,因为a4ak0,所以k10.应选C.答案:C4等差数列an满足a1a2a324,a18a19a2078,那么此数列的前20项和等于()A160 B180C200 D220解析:an是等差数列,a1a20a2a19a3a18.又a1a2a324,a18a19a2078,a1a20a2a19a3a1854,即3(a1a20)54,a1a2018.S20180.答案:B5设Sn是等差数列an的前n项和,假设,那么等于()A. B.C. D.解析:设S4m(m
3、0),那么S83m,所以S8S42m,由等差数列的性质知,S12S83m,S16S124m,所以S1610m,故.答案:A二、填空题(每题5分,共15分)6数列an为等差数列,且a34,前7项和S756,那么公差d_.解析:由S77a456,得a48,da4a34.答案:47假设等差数列an满足a7a8a90,a7a100,所以a80.又a7a10a8a90,所以a90,由得所以n,所以当n13时,Sn有最大值,S132513169.能力提升(20分钟,40分)11公差不为0的等差数列an满足aa1a4,Sn为数列an的前n项和,那么的值为()A2 B3C2 D3解析:公差d0的等差数列an满
4、足aa1a4,(a12d)2a1(a13d),即a14d,那么2.应选C.答案:C12假设等差数列an的前n项和Sn有最大值,且1,那么当Sn取最小正值时n_.解析:由于Sn有最大值,所以d0,因为1,所以0a11,且a10a110,所以S2010(a1a20)10(a10a11)0,又a1a2a100a11a12,所以S10S9S2S10,S10S11S190S20S21,又S19S1a2a3a199(a10a11)0,所以S19为最小正值答案:1913数列an是等差数列(1)Sn20,S2n38,求S3n;(2)项数为奇数,奇数项和为44,偶数项和为33,求数列的中间项和项数解析:(1)因为Sn,S2nSn,S3nS2n成等差数列,所以S3n3(S2nSn)54.(2)14数列an中,a11,前n项和Snan.(1)求a2,a3;(2)求an的通项公式解析:(1)由S2a2得3(a1a2)4a2,解得a23a13,由S3a3,得3(a1a2a3)5a3,解得a3(a1a2)6.(2)由题设知当n1时,a11.当n2时,有anSnSn1anan1整理得anan1,于是a2a1,a3a2,an1an2,anan1,将以上n1个等式中等号两端分别相乘,整理得an.综上可知,an的通项公式为an.- 4 -