ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:219.28KB ,
资源ID:4382834      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4382834.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2023版高考数学一轮复习第11章统计统计案例第3节变量间的相关关系统计案例课时跟踪检测文新人教A版.doc)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2023版高考数学一轮复习第11章统计统计案例第3节变量间的相关关系统计案例课时跟踪检测文新人教A版.doc

1、第三节变量间的相关关系、统计案例 A级根底过关|固根基|1.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,并制作成如下图的人体脂肪含量与年龄关系的散点图根据该图,以下结论中正确的选项是()A人体脂肪含量与年龄正相关,脂肪含量的中位数等于20%B人体脂肪含量与年龄正相关,脂肪含量的中位数小于20%C人体脂肪含量与年龄负相关,脂肪含量的中位数等于20%D人体脂肪含量与年龄负相关,脂肪含量的中位数小于20%解析:选B因为散点图呈现上升趋势,故人体脂肪含量与年龄正相关;因为中间两个数据大约介于15%到20%之间,故脂肪含量的中位数小于20%.应选B.2变量x和y的统计数据如下表:

2、x34567y2.5344.56根据上表可得回归直线方程为x0.25,据此可以预测当x8时,()A6.4 B6.25C6.55 D6.45解析:选C由题意知5,4,将点(5,4)代入x0.25,解得0.85,那么0.85x0.25,所以当x8时,0.8580.256.55,应选C.3在吸烟与患肺癌这两个分类变量的独立性检验的计算中,以下说法正确的选项是()A假设K2的观测值为k6.635,那么在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,那么在100个吸烟的人中必有99人患有肺癌B由独立性检验可知,在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系时,我们说某人吸烟,那么

3、他有99%的可能患有肺癌C假设从统计量中求出在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,是指有1%的可能性使得判断出现错误D以上三种说法都不正确解析:选C独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否那么就可能对统计计算的结果作出错误的解释假设从统计量中求出在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,是指有1%的可能性使得判断出现错误应选C.4两个随机变量x,y之间的相关关系如下表所示:x42124y5310.51根据上述数据得到的回归方程

4、为x,那么大致可以判断()A.0,0 B.0,0C.0 D.0,6.635,可知我们在犯错误的概率不超过0.01的前提下,即有99%以上的把握认为“爱好该项运动与性别有关,应选C.6(2023届惠州市第二次调研)某商场为了了解毛衣的月销量y(件)与月平均气温x()之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:月平均气温x/171382月销售量y/件24334055由表中数据算出线性回归方程x中的2,气象部门预测下个月的平均气温约为6 ,据此估计该商场下个月毛衣销售量约为_件解析:由题中数据,得10,38,又回归直线x过点(,),2,代入得58,那么回归方程为2x58,所

5、以当x6时,y46.答案:467写出以下命题中所有真命题的序号:_两个随机变量线性相关性越强,相关系数r越接近1;回归直线一定经过样本点的中心(x,y);假设线性回归方程为0.2x10,那么当样本数据中x10时,必有相应的y12;回归分析中,相关指数R2的值越大,说明残差平方和越小解析:两个随机变量线性相关性越强,相关系数|r|越接近1,原命题错误;回归直线一定经过样本点的中心(,),原命题正确;假设线性回归方程为0.2x10,那么当样本数据中x10时,可以预测y12,但是会存在误差,原命题错误;回归分析中,相关指数R2的值越大,说明残差平方和越小,原命题正确综上可得,正确命题的序号为.答案:

6、8心理学家分析发现视觉和空间想象能力与性别有关,某数学兴趣小组为了验证这个结论,从所在学校中按分层抽样的方法抽取50名同学(男30,女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答选题情况如下表:(单位:人)几何题代数题总计男同学22830女同学81220总计302050根据上述数据,推断视觉和空间想象能力与性别有关系,那么这种推断犯错误的概率不超过_附表:P(K2k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828解析:由列联表计算K2的观测值k5.5565.024.推断犯

7、错误的概率不超过0.025.答案:0.0259(2023届江西七校第一次联考)最近青少年的视力健康问题引起习主席的高度重视,某地区为了解当地24所小学,24所初中和12所高中的学生的视力状况,准备采用分层抽样的方法从这些学校中随机抽取5所学校对学生进行视力调查(1)假设从所抽取的5所学校中再随机抽取3所学校进行问卷调查,求抽到的这3所学校中,小学、初中、高中分别有一所的概率;(2)假设某小学被抽中,调查得到了该小学前五个年级近视率y的数据如下表:年级号x12345近视率y0.050.090.160.200.25根据前五个年级的数据,利用最小二乘法求出y关于x的线性回归方程,并根据方程预测六年级

8、学生的近视率附:回归直线x的斜率和截距的最小二乘法估计公式分别为解:(1)由242412221,得抽取的5所学校中有2所小学、2所初中、1所高中,分别设为a1,a2,b1,b2,c.从这5所学校中随机抽取3所学校的所有根本领件为(a1,a2,b1),(a1,a2,b2),(a1,a2,c),(a1,b1,b2),(a1,b1,c),(a1,b2,c),(a2,b1,b2),(a2,b1,c),(a2,b2,c),(b1,b2,c),共10种设事件A表示“抽到的这3所学校中,小学、初中、高中分别有一所,那么事件A包含的根本领件为(a1,b1,c),(a1,b2,c),(a2,b1,c),(a2,

9、b2,c),共4种,故P(A).(2)由题中表格数据得3,0.15,52.25,5245,又参考数据:xiyi2.76,x55,所以0.051,0.150.05130.003,得线性回归方程为0.051x0.003.当x6时,代入得0.05160.0030.303,所以六年级学生的近视率在0.303左右10(2023届“四省八校联盟高三联考)某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,假设该项质量指标值落在100,120)内,那么为合格品,否那么为不合格品,表1是甲套设备的样本的频数分布表,

10、图1是乙套设备的样本的频率分布直方图表1:甲套设备的样本的频数分布表质量指标值95,100)100,105)105,110)频数1518质量指标值110,115)115,120)120,125频数1961图1:乙套设备的样本的频率分布直方图(1)根据表1和图1,通过计算合格率对两套设备的优劣进行比拟;(2)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的该项质量指标值与甲、乙两套设备的选择有关.甲套设备乙套设备合计合格品不合格品合计附:P(K2k0)0.150.100.0500.0250.010k02.0722.7063.8415.0246.635参考公式:K2,其

11、中nabcd.解:(1)根据题目所给的质量指标值落在100,120)内的产品视为合格,可得甲套设备的样本的合格品数为48,甲套设备的样本的不合格品数为2,乙套设备的样本的合格品数为(0.0360.0440.0560.036)55043,乙套设备的样本的不合格品数为7.所以估计甲套设备生产合格品的概率为,乙套设备生产合格品的概率为,所以甲套设备优于乙套设备(2)由数据,得到如下的22列联表,甲套设备乙套设备合计合格品484391不合格品279合计5050100K23.05,因为3.052.706,所以有90%的把握认为该企业生产的这种产品的该项质量指标值与甲、乙两套设备的选择有关.B级素养提升|

12、练能力|11.(2023届郑州第一次质量预测)近年来郑州空气污染较为严重,现随机抽取一年(365天)内100天的空气中PM2.5指数的检测数据,统计结果如下:PM2.5指数0,50(50,100(100,150(150,200(200,250(250,300300空气质量优良轻微污染轻度污染中度污染中度重污染重度污染天数413183091115记某企业每天由空气污染造成的经济损失为S(单位:元),PM2.5指数为x.当x在区间0,100内时对企业没有造成经济损失;当x在区间(100,300内时对企业造成的经济损失成直线模型(当PM2.5指数为150时造成的经济损失为500元,当PM2.5指数为

13、200时,造成的经济损失为700元);当PM2.5指数大于300时造成的经济损失为2 000元(1)试写出S(x)的表达式;(2)试估计在本年内随机抽取一天,该天经济损失S大于500元且不超过900元的概率;(3)假设本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有95%的把握认为郑州市本年度空气重度污染与供暖有关?非重度污染重度污染总计供暖季非供暖季总计100附:P(K2k0)0.250.150.100.050.0250.0100.0050.001k01.3232.0722.7063.8415.0246.6357.87910.828K2,其中nabcd

14、.解:(1)依题意,可得S(x).(2)设“在本年内随机抽取一天,该天经济损失S大于500元且不超过900元为事件A,由500S900,得1503.841,所以有95%的把握认为空气重度污染与供暖有关12(2023届陕西省质量检测)基于移动互联网技术的共享单车被称为“新四大创造之一,短时间内就风行全国,带给人们新的出行体验某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:月份2023.82023.92023.102023.112023.122023.1月份代码x123456市场占有率y (%)111316152021(1)请在给出的坐标纸中作出散点图,并用相关系数说明能否用线性回归模型拟合市场占有率y与月份代码x之间的关系;(2)求y关于x的线性回归方程,并预测该公司2023年2月份的市场占有率参数数据:xi217.5,(xi)(yi)35,36.5.解:(1)作出散点图如下由题意得16,所以(yi)276.所以r0.96.所以两变量之间具有较强的线性相关关系,故可用线性回归模型拟合市场占有率y与月份代码x之间的关系(2)2,3.5,所以1623.59.所以y关于x的线性回归方程为2x9.2023年2月的月份代码为x7,所以27923,所以估计该公司2023年2月份的市场占有率为23%.- 8 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服