1、2022年广东省肇庆市高考数学二模试卷理科一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.15分设复数z满足z1+i=2,i为虚数单位,那么复数z的模是A2BCD25分M=1,0,1,2,N=x|x2x0,那么MN=A1,0B0,1C1,2D1,235分地铁列车每10分钟一班,在车站停1分钟那么乘客到达站台立即乘上车的概率是ABCD45分fx=lg10+x+lg10x,那么fx是Afx是奇函数,且在0,10是增函数Bfx是偶函数,且在0,10是增函数Cfx是奇函数,且在0,10是减函数Dfx是偶函数,且在0,10是减函数55分如下列图的程序框图给
2、出了利用秦九韶算法求某多项式值的一个实例,假设输入n,x的值分别为3,2,那么输出v的值为A9B18C20D3565分以下说法错误的选项是A“x0是“x0的充分不必要条件B命题“假设x23x+2=0,那么x=1的逆否命题为:“假设x1,那么x23x+20C假设pq为假命题,那么p,q均为假命题D命题p:xR,使得x2+x+10,那么p:xR,均有x2+x+1075分实数x,y满足约束条件,假设z=2x+y的最小值为3,那么实数b=ABC1D85分x+2x5的展开式中各项系数的和为2,那么该展开式中常数项为A40B20C20D4095分能使函数fx=sin2x+cos2x+ 的图象关于原点对称,
3、且在区间0,上为减函数的的一个值是ABCD105分t1,x=log2t,y=log3t,z=log5t,那么A2x3y5zB5z2x3yC3y5z2xD3y2x5z115分如图是某几何体的三视图,那么该几何体的体积为ABC8D4125分函数fx=,假设|fx|ax,那么实数a的取值范围为A2,1B4,1C2,0D4,0二、填空题:本大题共4小题,每题5分.135分|=|=|+|=1,那么|=145分函数fx=Asinx+A,是常数,A0,0的局部图象如下列图,那么f的值是155分正项数列an中,满足a1=1,a2=,=nN*,那么a1a3+a2a4+a3a5+anan+2=165分在三棱锥VA
4、BC中,面VAC面ABC,VA=AC=2,VAC=120,BABC那么三棱锥VABC的外接球的外表积是三、解答题:解容许写出文字说明,证明过程或演算步骤.1712分ABC的内角A、B、C的对边分别为a、b、c,ABC的面积为acsin2B求sinB的值;假设C=5,3sin2C=5sin2Bsin2A,且BC的中点为D,求ABD的周长1812分设正项数列an的前n项和为Sn,Sn,an+1,4成等比数列求数列an的通项公式;设bn=,设bn的前n项和为Tn,求证:Tn1912分某工厂对A、B两种型号的产品进行质量检测,从检测的数据中随机抽取6 次,记录数据如下:A:8.3,8.4,8.4,8.
5、5,8.5,8.9B:7.5,8.2,8.5,8.5,8.8,9.5 注:数值越大表示产品质量越好假设要从A、B中选一种型号产品投入生产,从统计学角度考虑,你认为生产哪种型号产品适宜简单说明理由;假设将频率视为概率,对产品A今后的4次检测数据进行预测,记这4次数据中不低于8.5 分的次数为,求的分布列及期望E2012分如图1,在高为2的梯形ABCD中,ABCD,AB=2,CD=5,过A、B分别作AECD,BFCD,垂足分别为E、FDE=1,将梯形ABCD沿AE、BF同侧折起,得空间几何体ADEBCF,如图2假设AFBD,证明:DEBE;假设DECF,CD=,在线段AB上是否存在点P使得CP与平
6、面ACD所成角的正弦值为并说明理由2112分函数fx=aexx,fx是fx的导数讨论不等式fxgx10的解集;当m0且a=1时,求fx在xm,m上的最值;并求当fxe22在xm,m恒成立时m的取值范围请考生在第22、23题中任选一题作答,如果多做,那么按所做的第一题计分.作答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.选修4-4:坐标系与参数方程2210分在直角坐标系xOy中,曲线C1的参数方程为t为参数,0,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程是+=4cos+4sin当=时,直接写出C1的普通方程和极坐标方程,直接写出C2的普通方程;点P1,且曲线C1和
7、C2交于A,B两点,求|PA|PB|的值选修4-5:不等式选讲23fx=|x+3|+|x1|,gx=x2+2mx求不等式fx4的解集;假设对任意的x1,x2,fx1gx2恒成立,求m的取值范围2022年广东省肇庆市高考数学二模试卷理科参考答案与试题解析一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.15分设复数z满足z1+i=2,i为虚数单位,那么复数z的模是A2BCD【解答】解:由z1+i=2,得z=,|z|=应选:C25分M=1,0,1,2,N=x|x2x0,那么MN=A1,0B0,1C1,2D1,2【解答】解:N=x|x2x0=x|0x1,
8、那么MN=0,1,应选:B35分地铁列车每10分钟一班,在车站停1分钟那么乘客到达站台立即乘上车的概率是ABCD【解答】解:由于地铁列车每10分钟一班,列车在车站停1分钟,乘客到达站台立即乘上车的概率为P=应选:A45分fx=lg10+x+lg10x,那么fx是Afx是奇函数,且在0,10是增函数Bfx是偶函数,且在0,10是增函数Cfx是奇函数,且在0,10是减函数Dfx是偶函数,且在0,10是减函数【解答】解:由得:x10,10,故函数fx的定义域为10,10,关于原点对称,又由fx=lg10x+lg10+x=fx,故函数fx为偶函数,而fx=lg10+x+lg10x=lg100x2,y=
9、100x2在0,10递减,y=lgx在0,10递增,故函数fx在0,10递减,应选:D55分如下列图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,假设输入n,x的值分别为3,2,那么输出v的值为A9B18C20D35【解答】解:初始值n=3,x=2,程序运行过程如下表所示:v=1i=2 v=12+2=4i=1 v=42+1=9i=0 v=92+0=18i=1 跳出循环,输出v的值为18应选:B65分以下说法错误的选项是A“x0是“x0的充分不必要条件B命题“假设x23x+2=0,那么x=1的逆否命题为:“假设x1,那么x23x+20C假设pq为假命题,那么p,q均为假命题D命题p:xR
10、,使得x2+x+10,那么p:xR,均有x2+x+10【解答】解:A“x0是“x0的充分不必要条件,正确,故A正确,B命题“假设x23x+2=0,那么x=1的逆否命题为:“假设x1,那么x23x+20正确,C假设pq为假命题,那么p,q至少有一个为假命题,故C错误,D命题p:xR,使得x2+x+10,那么p:xR,均有x2+x+10,正确,故错误的选项是C,应选:C75分实数x,y满足约束条件,假设z=2x+y的最小值为3,那么实数b=ABC1D【解答】解:作出不等式组对应的平面区域如图:阴影局部由z=2x+y得y=2x+z,平移直线y=2x+z,由图象可知当直线y=2x+z经过点A时,直线y
11、=2x+z的截距最小,此时z最小为3,即2x+y=3由,解得,即A,此时点A也在直线y=x+b上即=+b,即b=应选:A85分x+2x5的展开式中各项系数的和为2,那么该展开式中常数项为A40B20C20D40【解答】解:令x=1那么有1+a=2,得a=1,故二项式为x+2x5故其常数项为22C53+23C52=40应选:D95分能使函数fx=sin2x+cos2x+ 的图象关于原点对称,且在区间0,上为减函数的的一个值是ABCD【解答】解:函数fx=sin2x+cos2x+的图象关于原点对称,函数fx是奇函数,满足f0=sin+cos=0,得tan=,=+k,kZ;又fx=sin2x+cos
12、2x+=2sin2x+在区间0,上是减函数,+2x+,令t=2x+,得集合M=t|+t+,且M+2m,+2m,mZ;由此可得:取k=1,m=0;=,M=,满足题设的两个条件应选:C105分t1,x=log2t,y=log3t,z=log5t,那么A2x3y5zB5z2x3yC3y5z2xD3y2x5z【解答】解:t1,lgt0又0lg2lg3lg5,2x=20,3y=30,5z=0,=1,可得5z2x=1可得2x3y综上可得:3y2x5z应选:D115分如图是某几何体的三视图,那么该几何体的体积为ABC8D4【解答】解:由三视图可知:该几何体为一个三棱锥,底面是腰为2的等腰直角三角形,高为2,
13、该几何体的体积V=,应选:B125分函数fx=,假设|fx|ax,那么实数a的取值范围为A2,1B4,1C2,0D4,0【解答】解:|fx|=,画函数|fx|的图象,如下列图,、当x0时,|fx|=lnx+10,当x0时,|fx|=x24x0从图象上看,即要使得直线y=ax都在y=|fx|图象的下方,故a0,且y=x24x在x=0处的切线的斜率ka又y=x24x=2x4,y=x24x在x=0处的切线的斜率k=44a0应选:D二、填空题:本大题共4小题,每题5分.135分|=|=|+|=1,那么|=【解答】解:根据题意,|=|=|+|=1,那么有|+|2=2+2+2=2+2=1,解可得:=,那么
14、有|2=22+2=22=3,那么有|=;故答案为:145分函数fx=Asinx+A,是常数,A0,0的局部图象如下列图,那么f的值是【解答】解:根据函数fx=Asinx+A,是常数,A0,0的局部图象,可得A=,=,=2再根据五点法作图可得2+=,=,故fx=sin2x+f=,故答案为:155分正项数列an中,满足a1=1,a2=,=nN*,那么a1a3+a2a4+a3a5+anan+2=【解答】解:由=nN*,可得a2n+1=anan+2,数列an为等比数列,a1=1,a2=,q=,an=,anan+2=,a1a3=,a1a3+a2a4+a3a5+anan+2=,故答案为:165分在三棱锥V
15、ABC中,面VAC面ABC,VA=AC=2,VAC=120,BABC那么三棱锥VABC的外接球的外表积是16【解答】解:如图,设AC中点为M,VA中点为N,面VAC面ABC,BABC,过M作面ABC的垂线,球心O必在该垂线上,连接ON,那么ONAV在RtOMA中,AM=1,OAM=60,OA=2,即三棱锥VABC的外接球的半径为2,三棱锥VABC的外接球的外表积S=4R2=16故答案为:16三、解答题:解容许写出文字说明,证明过程或演算步骤.1712分ABC的内角A、B、C的对边分别为a、b、c,ABC的面积为acsin2B求sinB的值;假设C=5,3sin2C=5sin2Bsin2A,且B
16、C的中点为D,求ABD的周长【解答】解:由ABC的面积为acsinB=acsin2B得sinB=2sinBcosB,0B,sinB0,故cosB=,sinB=;由和 3sin2C=5sin2Bsin2A得16sin2C=25sin2A,由正弦定理得16c2=25a2,c=5,a=4,BD=a=2,在ABD中,由余弦定理得:AD2=c2+BD22cBDcosB=25+4252=24AD=2,ABD的周长为c=BD+AD=7+21812分设正项数列an的前n项和为Sn,Sn,an+1,4成等比数列求数列an的通项公式;设bn=,设bn的前n项和为Tn,求证:Tn【解答】解:Sn,an+1,4成等比
17、数列,an+12=4Sn,Sn=an+12,当n=1时,a1=a1+12,a1=1,当n2时,两式相减得,即an+an1anan12=0又an0,数列an的首项为1,公差为2的等差数列,即an=2n1,证明:,1912分某工厂对A、B两种型号的产品进行质量检测,从检测的数据中随机抽取6 次,记录数据如下:A:8.3,8.4,8.4,8.5,8.5,8.9B:7.5,8.2,8.5,8.5,8.8,9.5 注:数值越大表示产品质量越好假设要从A、B中选一种型号产品投入生产,从统计学角度考虑,你认为生产哪种型号产品适宜简单说明理由;假设将频率视为概率,对产品A今后的4次检测数据进行预测,记这4次数
18、据中不低于8.5 分的次数为,求的分布列及期望E【解答】本小题总分值12分解:A产品的平均数:B产品的平均数:2分A产品的方差:,B产品的方差:4分因为,两种产品的质量平均水平一样,A产品的质量更稳定,选择A中产品适宜6分可能取值为0,1,2,3,4,产品不低于8.5的频率为,将频率视为概率,8分那么B4,10分的分布列如下:01234P或者12分2012分如图1,在高为2的梯形ABCD中,ABCD,AB=2,CD=5,过A、B分别作AECD,BFCD,垂足分别为E、FDE=1,将梯形ABCD沿AE、BF同侧折起,得空间几何体ADEBCF,如图2假设AFBD,证明:DEBE;假设DECF,CD
19、=,在线段AB上是否存在点P使得CP与平面ACD所成角的正弦值为并说明理由【解答】证明:由得四边形ABEF是正方形,且边长为2,在图2中,AFBE,由得AFBD,BEBD=B,AF平面BDE,又DE平面BDE,AFDE,又AEDE,AEAF=A,DE平面ABEF,又BE平面ABEF,DEBE,解:当P为AB的中点时满足条件在图2中,AEDE,AEEF,DEEF=E,即AE面DEFC,过E作EGEF交DC于点G,可知GE,EA,EF两两垂直,以E为坐标原点,以,分别为x轴,y轴,z轴的正方向建立空间直角坐标系6分那么设平面ACD的一个法向量为,那么,得,8分设,那么P2,0,0,+,可得设CP与
20、平面ACD所成的角为,那么10分,所以P为AB的中点时满足条件12分2112分函数fx=aexx,fx是fx的导数讨论不等式fxgx10的解集;当m0且a=1时,求fx在xm,m上的最值;并求当fxe22在xm,m恒成立时m的取值范围【解答】解:fx=aex11分fxx1=aex1x10当a0时,不等式的解集为x|x12分当时,不等式的解集为3分当时,不等式的解集为x|x14分当时,不等式的解集为5分当a=1时,由fx=ex1=0得x=0,当xm,0时,fx0,fx单调递减,当x0,m时,fx0,fx单调递增;所以fxmin=f0=17分fxmax是fm、fm的较大者fmfm=emem2m,令
21、gx=exex2x,9分所以gx是增函数,所以当m0时,gmg0=0,所以fmfm,所以10分fxe22恒成立等价于,由gx单调递增以及g2=e22,得0m212分请考生在第22、23题中任选一题作答,如果多做,那么按所做的第一题计分.作答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.选修4-4:坐标系与参数方程2210分在直角坐标系xOy中,曲线C1的参数方程为t为参数,0,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程是+=4cos+4sin当=时,直接写出C1的普通方程和极坐标方程,直接写出C2的普通方程;点P1,且曲线C1和C2交于A,B两点,求|PA|PB|
22、的值【解答】本小题总分值10分解:曲线C1的参数方程为t为参数,0,消去参数t,得:得直线l的直角坐标方程为:sinxcosy+cos=0曲线C1的极坐标方程为cos2=4sin,即2cos2=4sin,曲线C的1标准方程:x2=4y4分曲线C2的极坐标方程是+=4cos+4sin,即2+7=4cos+4sin,C2的普通方程为x2+y2+7=4x+4y,即x22+y22=16分方法一:C2的普通方程为x22+y22=1,C2是以点E2,2为圆心,半径为1的圆,P在圆外,过P做圆的切线PH,切线长8分由切割线定理知|PA|PB|=|PH|2=410分方法二:将代入x22+y22=1中,化简得t
23、22sin+2cost+4=0,8分|PA|PB|=|t1t2|=410分选修4-5:不等式选讲23fx=|x+3|+|x1|,gx=x2+2mx求不等式fx4的解集;假设对任意的x1,x2,fx1gx2恒成立,求m的取值范围【解答】解:法一:不等式fx4,即|x+3|+|x1|4可得,或或3分解得x3或x1,所以不等式的解集为x|x3或x15分法二:|x+3|+|x1|x+3x1|=4,2分当且仅当x+3x10即3x1时等号成立4分所以不等式的解集为x|x3或x15分依题意可知fxmingxmax6分由知fxmin=4,gx=x2+2mx=xm2+m2所以8分由m24的m的取值范围是2m210分
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100