ImageVerifierCode 换一换
格式:PDF , 页数:3 ,大小:174KB ,
资源ID:4357448      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4357448.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【二***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【二***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(12导数的计算练习题.pdf)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

12导数的计算练习题.pdf

1、基本初等函数的导数公式及导数的运算法则基本初等函数的导数公式及导数的运算法则一、知识自测:一、知识自测:1、几个常用函数的导数:(1)f(x)=C,则 f(x)=_(2)f(x)=x,则 f(x)=_(3)f(x)=x x2 2,则 f(x)=_(4)f(x)=1 1,则 f(x)=_(5)f(x)=x x,则 f(x)=_x x2、基本初等函数的导数公式:(1)f(x)=C(C 为常数),则 f(x)=_(2)f(x)=x xa a(a a Q Q),则 f(x)=_(3)f(x)=sinx,则 f(x)=_(4)f(x)=cosx,则 f(x)=_(5)f(x)=a ax x,则 f(x)

2、=_(6)f(x)=e ex x,则 f(x)=_(7)f(x)=logloga ax x,则 f(x)=_(8)f(x)=lnlnx x,则 f(x)=_3、导数的运算法则:已知f f(x x),),g g(x x)的导数存在,则:(1)f f(x x)g g(x x)_ _(2)f f(x x)g g(x x)_(3)f f(x x)g g(x x)_二、典型例题:(一)利用求导公式和运算法则求导数1、y y 5 5 4 4x x3 32、y y 3 3x x2 2 x xsinsin x x3、y y e ex xlnln x x4、y y lnln x xx x 1 1 2 2x x5

3、、y y (x x 1 1)()(x x 2 2)()(x x 3 3)6、y y (x x 1 1)()(1 1 1 1)7、y y (x x 2 2)2 2 sinsinx xx xx x2 2coscos2 2基本初等函数的导数公式及导数的运算法则基本初等函数的导数公式及导数的运算法则一、知识自测:一、知识自测:1、几个常用函数的导数:(1)f(x)=C,则 f(x)=_(2)f(x)=x,则 f(x)=_(3)f(x)=x x2 2,则 f(x)=_(4)f(x)=1 1,则 f(x)=_(5)f(x)=x x,则 f(x)=_x x2、基本初等函数的导数公式:(1)f(x)=C(C

4、为常数),则 f(x)=_(2)f(x)=x xa a(a a Q Q),则 f(x)=_(3)f(x)=sinx,则 f(x)=_(4)f(x)=cosx,则 f(x)=_(5)f(x)=a ax x,则 f(x)=_(6)f(x)=e ex x,则 f(x)=_(7)f(x)=logloga ax x,则 f(x)=_(8)f(x)=lnlnx x,则 f(x)=_3、导数的运算法则:已知f f(x x),),g g(x x)的导数存在,则:(1)f f(x x)g g(x x)_ _(2)f f(x x)g g(x x)_(3)f f(x x)g g(x x)_二、典型例题:(一)利用求

5、导公式和运算法则求导数1、y y 5 5 4 4x x3 32、y y 3 3x x2 2 x xsinsin x x3、y y e ex xlnln x x4、y y lnln x x 2 2x xx x 1 15、y y (x x 1 1)()(x x 2 2)()(x x 3 3)6、y y (x x 1 1)()(1 1 1 1)7、y y (x x 2 2)2 2 sinsinx xx xx x2 2coscos2 2(二)求曲线的切线方程:(二)求曲线的切线方程:1、函数g g(x x)2 2x x3 3 2 2x x2 2 7 7x x 4 4在 x=2 处的切线方程为_2、求过

6、曲线 y=cosx 上点 P(,1 1)且与过这点的切线垂直的直线方程3 3 2 23、在曲线y y x x3 3 3 3x x2 2 6 6x x 1010的切线中,求斜率最小的切线方程。三、基础过关:1、下列结论正确的个数是()y=ln2,则 y=1 1y=1 1x x2 2,则,则y y|2 2x x 3 3 27272 2y=2 2x x,则则y y 2 2x xlnln2 2y=loglog1 12 2x x,则,则y y x xlnln2 2A.0 B.1 C.2 D.32、曲线y 12x2在点(1,12)处切线的倾斜角为()A1BCD54443、已知曲线y x2 2x 2在点M处

7、的切线与x轴平行,则点M的坐标是()A(1,3)B(1,3)C(2,3)D(2,3)4、设P为曲线C:y x22x3上的点,且曲线C在点P处切线倾斜角的取值范围为0,4,则点P横坐标的取值范围为()A1,1B1,0C01,D21,125、若函数f f(x x)x xm m axax的导数的导数f f (x x)2 2x x 1 1,则数列,则数列 1 1f f(n n)(n n N N*)的前的前n n项和项和S Sn n是()A.n nn n 1 1B.n n 2 2n nn n 1 1n n 1 1C.n n 1 1D.n n6、曲线y x2x1在点(1,1)处的切线方程为_7、曲线y x

8、3在点(1,1)处的切线与x轴、直线x 2所围成的三角形面积为_8、已知函数f f(x x)x x2 2(x x 1 1),),当当x x x x0 0时,有时,有 f f (x x0 0)f f(x x0 0),),则则x x0 0 _9、(1)已知f f(x x)xexex x sinsin x xcoscos x x,则则f f (0 0)_(2)已知g g(x x)(x x 1 1)()(x x 2 2)()(x x 3 3)()(x x 4 4)()(x x 5 5),),则则g g(1 1)_10、已知f f(x x)1 13 3x x3 3 3 3x xf f (0 0),),则

9、则f f (1 1)_11、已知曲线方程为y y x x2 2 3 3,求过点 B(3,5)且与曲线相切的直线方程。12、偶函数f f(x x)axax4 4 bxbx3 3 cxcx2 2 dxdx e e的图像过点 P(0,1),且在 x=1 处的切线方程为y=x-2,求 y=f(x)的解析式。(三)求导公式的综合应用1、设 f(x)=x(x+1)(x+2)(x+n),求f f (0 0)。2、点 P 是曲线y y e ex x上任意一点,求点P 到直线 y=x 的最小距离。3、已知f f (x x)是一次函数,x2 f(x)(2x 1)f(x)1对一切x x R R恒成立,求f f(x

10、x)的解析式。变式:f(x)是二次函数,f f(0 0)4 4,f f (0 0)1 1,f f (1 1)7 7,求f f(x x)的解析式。第二课时 复合函数求导一、知识回顾:1、复合函数的概念:一般的,对于两个函数_和_,如果通过变量 u,y 可以表示成x 的函数,那么称这个函数为两个函数的复合函数,记作_2、复合函数的求导法则:_ 即:_二、基础过关:1、函数y (2 x3)2的导数是()A6x512x2B4 2x3C2(2 x3)3D2(2 x3)3x2、设y y 1 1 a a 1 1 x x,则则y y ()A.1 1 1 1B.1 1C.1 11 1D.2 2 1 1 a a2

11、 2 1 1 x x2 2 1 1 x x2 2 1 1 a a 2 2 1 1 x x 1 12 2 1 1 x x3、已知y 1sin2x sin x,那么y是()2A仅有最小值的奇函数B既有最大值又有最小值的偶函数C仅有最大值的偶函数D非奇非偶函数4、曲线1y e2x在点(4,e2)处的切线与坐标轴所围三角形的面积为()A9e2B4e2C2e2De225、设y y f f(cos(cos2 2x x),),且且f f(x x)可导,则可导,则y y ()A.2 2sinsin2 2x xf f (cos(cos2 2x x)B.2 2sinsin2 2x xf f (sin(sin2 2

12、x x)C.sinsin2 2x xf f (cos(cos2 2x x)D.coscos2 2x xf f (sinsin2 2x x)6 6、(20102010 全国卷全国卷 2 2 理)理)若曲线y x12在点1a,a2处的切线与两个坐标围成的三角形的面积为18,则a()(A)64(B)32(C)16(D)87、曲线y y ln(ln(2 2x x 1 1)上的点到直线 2x-y+3=0 的最短距离是()A.5 5B.2 2 5 5C.3 3 5 5D.08、已知 f(x)ln(x2 x 1),若f(a)1,则实数a的值为_9、y sin3x在(,0)处的切线斜率为_310、曲线y y

13、x x 1 1在点 x=8 处的切线方程是_x x 4 411、函数 y=cosxcos2xcos4x 的导数是_12、函数f(x)xekx(k 0)在(0,f(0)处的切线方程为_13、求下列函数的导数:(1)y y lnlnsinsin2 2x x(2)y y sinsin2 2(2 2x x )(3)y y 3 3x x2 2 2 2x x 3 3x x3 3(4)y y 1 1(1 1 3 3x x)4 4(5)y y x x 1 1 x x2 2(6)y y loglog2 2(2 2x x2 2 3 3x x 1 1)14、(1)设函数 f(x)满足2 2 f f(x x)3 3 f f(1 1x x)1 1x x,求f f (x x).).(2)设f f(x x)e e3 3x x 1 1cos(cos(2 2 x x 3 3),),求求f f (x x).).15、已知曲线C C1 1:y y x x2 2与与C C2 2:y y (x x 2 2)2 2,直线l l与与C C1 1,C C2 2都相切,求直线l l的方程。16、求 y=(x-1)(x-2)(x-10)(x10)的导数。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服