ImageVerifierCode 换一换
格式:PDF , 页数:5 ,大小:393KB ,
资源ID:4351973      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4351973.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(高考不等式经典例题.pdf)为本站上传会员【二***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高考不等式经典例题.pdf

1、高考不等式专题精练(教师专用)高考不等式专题精练(教师专用)高考不等式经典例题【例 1】已知 a0,a1,Ploga(a3a1),Qloga(a2a1),试比较 P 与 Q 的大小.【解析】因为 a3a1(a2a1)a2(a1),当 a1 时,a3a1a2a1,PQ;当 0a1 时,a3a1a2a1,PQ;综上所述,a0,a1 时,PQ.【变式训练 1】已知 maA.mn11(a2),nx2(x),则 m,n 之间的大小关系为()2a2B.mnC.mnD.mn【解析】选 C.本题是不等式的综合问题,解决的关键是找中间媒介传递.ma111a22224,而 nx2()24.2a2a2【变式训练 2

2、已知函数 f(x)ax2c,且4f(1)1,1f(2)5,求 f(3)的取值范围.【解析】由已知4f(1)ac1,1f(2)4ac5.令 f(3)9ac(ac)(4ac),5,4 9,3所以 18358故 f(3)(ac)(4ac)1,20.33题型三开放性问题cd【例 3】已知三个不等式:ab0;bcad.以其中两个作条件,余下的一个作结论,则能组ab成多少个正确命题?cdbcad【解析】能组成 3 个正确命题.对不等式作等价变形:0.ababbcad(1)由 ab0,bcad0,即;abbcad(2)由 ab0,0bcad0bcad,即;abbcad(3)由 bcad0,0ab0,即.a

3、b故可组成 3 个正确命题.【例 2】解关于 x 的不等式 mx2(m2)x20(mR R).【解析】当 m0 时,原不等式可化为2x20,即 x1;当 m0 时,可分为两种情况:高考不等式专题精练(教师专用)高考不等式专题精练(教师专用)2(1)m0 时,方程 mx2(m2)x20 有两个根,x11,x2.m2所以不等式的解集为x|x1 或 x;m(2)m0 时,原不等式可化为mx2(2m)x20,m222其对应方程两根为 x11,x2,x2x1(1).mmm2m2 时,m20,m0,所以 x2x10,x2x1,不等式的解集为x|1x;mm2 时,x2x11,原不等式可化为(x1)20,解集

4、为;22m0 时,x2x10,即 x2x1,不等式解集为x|x1.m【变式训练 2】解关于 x 的不等式ax10.x1【解析】原不等式等价于(ax1)(x1)0.1当 a0 时,不等式的解集为x|x1;当 a0 时,不等式的解集为x|x 或 x1;a1当1a0 时,不等式的解集为x|x1;当 a1 时,不等式的解集为;a1当 a1 时,不等式的解集为x|1x.a【例 3】已知 ax2bxc0 的解集为x|1x3,求不等式 cx2bxa0 的解集.1【解析】由于 ax2bxc0 的解集为x|1x3,因此 a0,解得 x 或 x1.32y1(1)zx2y4 的最大值;(2)zx2y210y25 的

5、最小值;(3)z的取值范围.x1【解析】作出可行域如图所示,并求出顶点的坐标 A(1,3),B(3,1),C(7,9).(1)易知直线 x2y4z 过点 C 时,z 最大.所以 x7,y9 时,z 取最大值 21.(2)zx2(y5)2表示可行域内任一点(x,y)到定点 M(0,5)的距离的平方,过点 M 作直线 AC 的垂线,易知垂足 N 在线段 AC 上,故 z 的最小值是(|052|9)2.221(3)z2表示可行域内任一点(x,y)与定点 Q(1,)连线斜率的 2 倍.2x(1)7337因为 kQA,kQB,所以 z 的取值范围为,.4842【例 1】(1)设 x,yR R,且 xy(

6、xy)1,则()1y()2高考不等式专题精练(教师专用)高考不等式专题精练(教师专用)A.xy2(21)B.xy2(21)C.xy2(21)2D.xy(21)2(2)已知 a,bR R,则 ab,ab,2a2b22ab,的大小顺序是.2abxyxy)2,所以()21(xy).22【解析】(1)选 A.由已知得 xy1(xy),又 xy(解得 xy2(21)或 xy2(1 2).因为 xy0,所以 xy2(21).ab2ab2ab(2)由 ab有 ab2 ab,即 ab,所以 ab.2ababab又2a22abb242(a2b2),所以4a2b2ab,所以22a2b2ab2ab ab.22ab1

7、 11 1【变式训练【变式训练 1 1】设设 a ab bc c,不等式,不等式恒成立,则恒成立,则 的取值范围是的取值范围是.a ab bb bc ca ac c【解析】(,4).因为 abc,所以 ab0,bc0,ac0.而(ac)(1111)(ab)(bc)()4,所以 4.abbcabbc5 51 1【例【例 2 2】(1)(1)已知已知 x x,则函数,则函数 y y4 4x x2 2的最大值为的最大值为;4 44 4x x5 5511【解析】(1)因为 x,所以 54x0.所以 y4x2(54x)3231.44x554x1当且仅当 54x,即 x1 时,等号成立.所以 x1 时,y

8、max1.54x(a ab b)2 2【变式训练【变式训练 2 2】已知已知 x x,a a,b b,y y 成等差数列,成等差数列,x x,c c,d d,y y 成等比数列,求成等比数列,求的取值范围的取值范围.cdcd【解析】由等差数列、等比数列的性质得 abxy,(ab)2(xy)2(ab)2(ab)2xyyycdxy,所以2 ,当 0 时,4;当0 时,0,cdxyyxxcdxcd(ab)2故的取值范围是(,04,).cd例例已知已知x,y,0,281,求,求xy的最小值。的最小值。xy2 28 4y64x4y 64x12 xyg32 2g32 64。解:解:xy xygxyxyxy

9、当且仅当281时,即x 4.y 16,上式取“=”,故xy64。minxy2例例已知已知041的最小值。的最小值。x1,求函数,求函数y x1 x解:解:因为0 x1,所以1x 0。高考不等式专题精练(教师专用)高考不等式专题精练(教师专用)41 x411x 4 x 1 x 5 9。所以y x1 xx1 xx1 x41 xx2当且仅当时,即x,上式取“=”,故ymin 9。x1 x3例例已知已知x,y,zR,且,且x149y z 1,求,求xyz的最小值。的最小值。解:解:设 0,故有x yz10。91491491 4x y z1xyzxyzxyzxyz 2 4612。当且仅当149x,y,z

10、同时成立时上xyzx y z 1,解得36,此时述不等式取“=”,即x 1,y 2,z 3,代入14912 36,故xyz例例若正实数若正实数 x x,y y满足满足xy_)答案:答案:1818解:因为 x0,y0,所以xy的最小值为 36。2x y6,则,则 xyxy 的最小值是的最小值是。(变式:求(变式:求 2 2x x+y y 的最小值为的最小值为 2x y6 2 2xy 6,xy2 2xy 60,解得xy 3 2或 xy (舍)2等号当且仅当 2x=y=6 时成立,故 xy 的最小值为 18。变式答案:12解:因为 x0,y0,所以xy1 2x y2 2x y6()22整理得(2x y)28(2x y)48 0,解得2x y 12或2x y 4(舍)等号当且仅当 2x=y=6 时成立,故 2x+y 的最小值为 12。例例若对任意若对任意x 0,x a恒成立,则恒成立,则a的取值范围是的取值范围是。2x 3x1高考不等式专题精练(教师专用)高考不等式专题精练(教师专用)答案:a 15解:因为x1,所以有 2(当且仅当x=1时取等号)xx111x112,即的最大值为,故。a 1x 3x1x32355x23x15x 0,所以x

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服