ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:45.50KB ,
资源ID:4345893      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4345893.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(穿根法解不等式的原理.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

穿根法解不等式的原理.doc

1、穿根法解不等式得原理、步骤与应用范例摘要:本文通过阐述穿根法解不等式得原理、步骤与应用范例,尝试对其进行系统性得论述、在原理层面,提出该方法中不等式得标准形式为()(x-x1)(x-2)(xx)0,规范了序轴得概念,先后由一元一次、二次到高次不等式,动态考察了f()得符号变化规律,并介绍如何使用穿根法表达此规律;在步骤层面,对解高次不等式、分式不等式与含等号不等式得操作步骤进行了分类详述;然后通过6个应用范例,进一步展现了穿根法解不等式得具体操作细节与若干注意事项。论文最后概括说明了穿根法得特征与实用意义、关键词:穿根法;解不等式;原理;步骤;应用穿根法,又称序轴标根法,就是解一元整式、分式不

2、等式得重要通用方法,特别在解简单高次不等式时,一直居于主流地位。然而,该方法目前尚未进入中学正式教材,在很多资料中,对此法也往往就是只提应用,而对其来龙去脉,叙述不清,建构模糊。现结合中学一线教学经验,通过阐述其原理、步骤与应用范例,尝试对其进行系统性得论述。一、 原理穿根法解不等式时,一般先将其化为形如:f(x)=(xx1)(x2)(n) (或)得标准形式,主要考察f()得符号规律。在穿根法中我们引入序轴得概念、序轴就是一条有向直线,类似于数轴,但上面不必标出原点,也不必考虑长度单位,只要求在其上标数时,按由左至右,从小到大得顺序即可。(一) 一次不等式标准形式:f(x)-x0(或0)我们将

3、x0得根标在序轴上,可以发现:x1右边得点都就是大于x1得点,即就是x-x0得解;而x1左边得点都就是小于x1得点,即就是x-x1得解。所以可以如图标注,图中、-用以表示(x)=xx1得符号。我们还可以以动态得思想来考察该问题。当一点=a从1右侧向x左侧移动时,f()=xx经历了由正到0又到负得符号变换。由此也可得出f(x)得符号可以如图标注得结论、(二) 二次不等式标准形式:(x)=(xx1)(x-x2)0(或0)(1)x1x时,不妨设x1 将f(x)0得二根x、x2标在序轴上,则可以发现:处于(-,x1),(2,+)内得点满足f() 0,处于(x,x2)内得点满足(x)0得解、而若动态得考

4、察此问题,则有点=从x1右侧移动向左侧移动时,由于平方项内得-由正到又到负,所以f(x)经历了由正到0又回到正得过程。故而f(x)在x两侧符号同正,只有在=1处为0。(三) 高次不等式标准形式:f()=(1)(xx2)(-xn)0 (或0),x12xn(1) x10;而当点xa从x右侧移动到左侧时,xxn符号变化,而其余任一x均不变号,所以有f(x)由正变负;类似可得:对任一i,当点x=a从xi右侧移动到左侧时,xxi符号变化,而其余每个x-x()都不变号,所以有f(x)必然变号,或由正变负,或由负变正。就这样,由于每过一个x都恰有一个因式-xi变号,所以我们可以从最右上方开始画一条依次穿过各

5、根得线,这正就是穿根法得原理与名称由来。(2) x2n且有等号成立时其标准形式可写为f(x)=(xx)m1(x-x2)m2(xxn)n0 (或0),0解集,在序轴下方得曲线对应得区间为f()解集。(二) 分式不等式一、先将不等式整理成f(x)/(x)或f()/g()0 f(x)g(x) f(x)/g(x)0 f(x)g(x) 0即将分式不等式转化为整式不等式再处理。(三) 含等号得整式、分式不等式对于整式不等式,要注意写解集时将各个根包括进去。一般只需将开区间符号改为闭区间符号,同时注意必要时合并区间。对于分式不等式,尤其要注意分母非0。 ()() f(x)g(x)0 且 g(x) f(x)g

6、()0 (x)g(x)0且 g()0这样就要求在标根时,将能够使不等式成立得根标为实点,否则标为虚点。(四) 注意分式不等式与高次不等式在化简时每一步变形都应就是不等式得等价变形。对于变形中出现得形如x+xq得因式,若其0,则继续分解。若0(x25x+4)(25x+6)200(x25x)+10(x25x)60(25x6)(xx)0(-5x+6)(x-)(x+) 2-5+16恒大于零,于就是得与原不等式同解得不等式(-6)( x1)0对此也可用穿根法解决,如图所以,原不等式得解集就是:(,)(,+)例4 解不等式: (3x-)/(x2+23) 解:原不等式 (3x-x2-4x+6)/(x2+2x

7、3)0 (x2+4x-3x+5)(2+2-3)0 (22x)/(x22x3)0 (x1)(2x-1)/(x+)(-)0 (x+1)(2x1)(x3)(x1)0且 (x+)(x)0 如图,用穿根法,注意区分实点与虚点,可得原不等式解集为:(-,3)-,1/2(1,)例5 解关于x得不等式:(x1)(x-t)0解:) t1时,如图用穿根法,可得原不等式解集为:(1,t)例6 若a1,解关于x得不等式 (x-a)(x+1)(x1)0解:1) 1时,如图用穿根法,原不等式解集为:(,)(-1,1) -1a1时,如图用穿根法,原不等式解集为:(, -1)(,a说明:解整式、分式不等式注意事项,可记以下口诀:移项调号,分解排序,奇穿偶回,分母非零,参数讨论,小心等号、四、 小结穿根法通过序轴、标根、穿根线及区间正负标志,形象得表示f(x)=(x-x1)(xx2)(n)值得符号变化规律,较好体现了数形结合得思想,具备直观明晰得优点。它还有数轴标根法、区间法,根轴法等名称,但相对来说,用“序轴标根法”作为学名比较确切,简称为“穿根法较为形象。此方法通用性强,思想方法灵活独特、易于领会。它主要用于解一元高次不等式与分式不等式,对于一元一次、二次不等式,也一样适用、系统地了解领会此方法得原理应用、来龙去脉,对于学生提高数学思维素质与解题水平,具有重要意义、

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服