1、 2017年初中数学试卷 一、综合题(共32题;共413分) 1、如图1,正方形ABCD与正方形AEFG的边AB,AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为α.在旋转过程中,两个正方形只有点A重合,其它顶点均不重合,
2、连接BE,DG. (1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG; (2)如图3,如果α=45°,AB=2,AE=3 . ①求BE的长;②求点A到BE的距离; (3)当点C落在直线BE上时,连接FC,直接写出∠FCD的度数. 2、(2015•恩施州)矩形AOCD绕顶点A(0,5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2,CM=4. (1)求AD的长; (2)求阴影部分的面积和直线AM的解析式; (3)求经过A、B、D三点的抛物线的解析
3、式; (4)在抛物线上是否存在点P,使S△PAM=?若存在,求出P点坐标;若不存在,请说明理由. 3、(2016•安徽)如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点. (1)求证:△PCE≌△EDQ; (2)延长PC,QD交于点R. ①如图1,若∠MON=150°,求证:△ABR为等边三角形; ②如图3,若△ARB∽△PEQ,求∠MON大小和 的值. 4、(2016•成都)如图①
4、△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD. (1)求证:BD=AC; (2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE. ①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长; ②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由. 5、(2016•重庆)在△ABC中,∠B=45°,∠C=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,在AG上取点F,
5、连接DF.延长DA至E,使AE=AF,连接EG,DG,且GE=DF. (1)若AB=2 ,求BC的长; (2)如图1,当点G在AC上时,求证:BD= CG; (3)如图2,当点G在AC的垂直平分线上时,直接写出 的值. 6、(2016•达州)△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF. (1)观察猜想 如图1,当点D在线段BC上时, ①BC与CF的位置关系为:________. ②BC,CD,CF之间的数量关系为:________;(将结论直接写在横线上)
6、 (2)数学思考 如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展延伸 如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2 ,CD= BC,请求出GE的长. 7、(2016•舟山)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形” (1)概念理解: 请你根据上述定义举一个等邻角四边形的例子; (2)问题探究; 如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探
7、究AC与BD的数量关系,并说明理由; (3)应用拓展; 如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积. 8、(2016•贵港)如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H. (1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG. ①求证:△AGE≌△AFE; ②若BE=2,DF=3,求
8、AH的长. (2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由. 9、(2016•义乌)对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0). (1)分别写出点A经1次,2次斜平移后得到的点的坐标. (2)如图,点M是直线l上的一点,点A关于点M的对称点的点B,点B关于直线l的对称轴为点C. ①若A、B、C三点不在同一条直线上,判断△ABC
9、是否是直角三角形?请说明理由. ②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值. 10、(2016•衢州)如图1,在直角坐标系xoy中,直线l:y=kx+b交x轴,y轴于点E,F,点B的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为A、C,点D是线段CO上的动点,以BD为对称轴,作与△BCD或轴对称的△BC′D. (1)当∠CBD=15°时,求点C′的坐标. (2)当图1中的直线l经过点A,且k=﹣ 时(如图2),求点D由C到O的运动过程中,线段BC′扫过的图形与△OAF重叠部分的面积.
10、 (3)当图1中的直线l经过点D,C′时(如图3),以DE为对称轴,作于△DOE或轴对称的△DO′E,连结O′C,O′O,问是否存在点D,使得△DO′E与△CO′O相似?若存在,求出k、b的值;若不存在,请说明理由. 11、(2016•葫芦岛)如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF. (1)请直接写出线段AF,AE的数量关系________; (2)将△CED绕点C逆时针旋转,当点E在线段BC
11、上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论; (3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由. 12、在△ABC中,∠BAC=90°,AB=AC. (1)如图1,若A,B两点的坐标分别是A(0,4),B(﹣2,0),求C点的坐标; (2)如图2,作∠ABC的角平分线BD,交AC于点D,过C点作CE⊥BD于点E,求证:CE= BD; (3)如图3,点P是射线BA上A点右边一动点,以CP为斜边作等腰直角△C
12、PF,其中∠F=90°,点Q为∠FPC与∠PFC的角平分线的交点,当点P运动时,点Q是否恒在射线BD上?若在,请证明;若不在,请说明理由. 13、如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点. (1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等? (2)若点
13、Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过________后,点P与点Q第一次在△ABC的________边上相遇?(在横线上直接写出答案,不必书写解题过程) 14、如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(提示:正方形的四条边都相等,四个角都是直角) (1)如果AB=AC,∠BAC=90°, ①当点D在线段BC上时(与点B不重合),如图2,线段CF,BD所在直线的位置关系为________,线段CF,BD的数量关系为________; ②当点
14、D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由; (2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足________条件时,CF⊥BC(点C,F不重合),不用说明理由. 15、如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N. (1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点; (2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;
15、 (3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由. 16、已知:等腰△ABC中,AB=AC,点D是直线AC上一动点,点E在BD的延长线上,且AB=AE,∠CAE的角平分线所在的直线交BE于F,连结CF. (1)如图1,当点D在线段AC上时,求证:∠ABE=∠ACF; (2)如图2,当∠ABC=60°且点D在线段AC上时,求证:AF+EF=FB.(提示:将线段FB拆分成两部分) (3)①如图3,当∠ABC=45°其点D在线段AC上时,线段AF、
16、EF、FB仍有(2)中的结论吗?若有,加以证明;若没有,则有怎样的数量关系,直接写出答案即可. ②如图4,当∠ABC=45°且点D在CA的延长线时,请你按题意将图形补充完成.并直接写出线段AF、EF、FB的数量关系. 17、(2016•金华)在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG. (1)如图2,若α=60°,OE=OA,求直线EF的函数表达式. (2)若α为锐角,tanα= ,当AE取得最小值时,求正方形OEFG的面积.
17、 (3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为 :1?若能,求点P的坐标;若不能,试说明理由 18、在图中,正方形AOBD的边AO,BO在坐标轴上,若它的面积为16,点M从O点以每秒1个单位长度的速度沿x轴正方向运动,当M到达B点时,运动停止.连接AM,过M作AM⊥MF,且满足AM=MF,连接AF交BD于E点,过F作FN⊥x轴于N,连接ME.设点M运动时间为t(s). (1)直接写出点D和M的坐标(可用含t式子表示); (2)当△MNF面积为 时,求t的值; (
18、3)△AME能否为等腰三角形?若不能请说明理由;若能,求出t的值. 19、如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH. (1)求证:∠APB=∠BPH; (2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论; (3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 2
19、0、已知点P是Rt△ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F. (1)如图1,当点P为AB的中点时,连接AF,BE.求证:四边形AEBF是平行四边形; (2)如图2,当点P不是AB的中点,取AB的中点Q,连接EQ,FQ.试判断△QEF的形状,并加以证明. 21、图1是边长分别为4 和2的两个等边三角形纸片ABC和OD′E′叠放在一起(C与O重合). (1)操作:固定△ABC,将△ODE绕点C顺时针旋转30°,后得到△ODE,连接AD、BE、CE的延长线交AB于F(图2): 探究:在图2中,线段BE与A
20、D之间有怎样的大小关系?试证明你的结论. (2)在(1)的条件下将△ODE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR,当点P与点F重合时停止运动(图3). 探究:设△PQR移动的时间为x秒,△PQR与△ABC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围. (3)将图1中△ODE固定,把△ABC沿着OE方向平移,使顶点C落在OE的中点G处,设为△ABG,然后奖△ABG绕点G顺时针旋转,边BG交边DE于点M,边AG交边DO于点N,设∠BGE=α(30°<α<90°)(图4). 探究:在图4中,线段ON•EM
21、的值是否随α的变化而变化?如果没有变化,请你求出ON•EM的值,如果有变化,请你说明. 22、如图(1),在矩形ABCD中,AB=4,BC=6,P是AD的中点,N是BC延长线上一点,连结PN,过点P作PN的垂线,交AB于点E,交CD的延长线于点F,连结EN,FN,设CN=x,AE=y. (1)求证:PE=PF; (2)当0<x< 时,求y关于x的函数表达式; (3)若将“矩形ABCD”变为“菱形ABCD”,如图(2),AB=BC=4,∠B=60°,当0<x<3时,其它条件不变,求此时y关于x的函数表达式. 2
22、3、分别以▱ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,△ABE,△CDG,△ADF. (1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF与EF的关系(只写结论,不需证明); (2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由. 24、如图1,等边△ABC边长为6,AD是△ABC的中线,P为线段AD(不包括端点A、D)上一动点,以CP为一边且在CP左下方作如图所示的等边△CPE,连结BE.
23、1)点P在运动过程中,线段BE与AP始终相等吗?说说你的理由; (2)若延长BE至F,使得CF=CE=5,如图2,问: ①求出此时AP的长; ②当点P在线段AD的延长线上时,判断EF的长是否为定值,若是请直接写出EF的长;若不是请简单说明理由. 25、如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM交BD于点F. (1)试说明OE=OF; (2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成
24、立吗?如果成立,请给出说明理由;如果不成立,请说明理由. 26、如图1,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4) (1)求B点坐标; (2)如图2,若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=90°连OD,求∠AOD的度数; (3)如图3,过点A作y轴的垂线交y轴于E,F为x轴负半轴上一点,G在EF的延长线上,以EG为直角边作等腰Rt△EGH,过A作x轴垂线交EH于点M,连FM,等式AM=FM+OF是否成立?若成立,请证明:若不成立,说明理由. 27、如图:在△ABC中,B
25、E、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG. (1)求证:AD=AG; (2)AD与AG的位置关系如何,请说明理由. 28、如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD. (1)求证:BD=AE; (2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN的形状,并说明理由. 29、已知A(0,2),B(4,0). (1)如图1,连接A
26、B,若D(0,﹣6),DE⊥AB于点E,B、C关于y轴对称,M是线段DE上的一点,且DM=AB,连接AM,试判断线段AC与AM之间的位置和数量关系,并证明你的结论; (2)如图2,在(1)的条件下,若N是线段DM上的一个动点,P是MA延长线上的一点,且DN=AP,连接PN交y轴于点Q,过点N作NH⊥y轴于点H,当N点在线段DM上运动时,△MQH的面积是否为定值?若是,请求出这个值;若不是,请说明理由. 30、如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向F点运动,动点G以1cm/s的速度从C点
27、向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t. (1)求证:在运动过程中,不管t取何值,都有S△AED=2S△DGC . (2)当t取何值时,△DFE与△DMG全等. 31、如图,在平面直角坐标系中,A,B,C为坐标轴上的三点,且OA=OB=OC=4,过点A的直线AD交BC于点D,交y轴于点G,△ABD的面积为8.过点C作CE⊥AD,交AB交于F,垂足为E. (1)求D点的坐标; (2)求证:OF=OG; (3)在第一象限内是否存在点P,使得△CFP为等腰直角三角形?若存在,请求出点P
28、的坐标,若不存在,请说明理由. 32、在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点,现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图). (1)旋转过程中,当MN和AC平行时,求正方形OABC旋转的角度; (2)试证明旋转过程中,△MNO的边MN上的高为定值; (3)折△MBN的周长为p,在旋转过程中,p值是否发生变化?若发生变化,说明理由;若不发生变化,请给予证明,并求出p的值. 二、填空题(共8题;共8分
29、 33、(2015•贺州)如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤,其中正确的结论是 ________(填入正确结论的序号). 34、如图,梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,点E在DC上,AE,BC的延长线相交于点F,若AE=10,则S△ADE+S△CEF的值是________ . 35、(2016
30、•宜宾)如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA; ②四边形AMCB的面积最大值为10; ③当P为BC中点时,AE为线段NP的中垂线; ④线段AM的最小值为2 ; ⑤当△ABP≌△ADN时,BP=4 ﹣4. 36、如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°
31、得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论: ①四边形AEGF是菱形 ②△AED≌△GED ③∠DFG=112.5° ④BC+FG=1.5 其中正确的结论是________. 37、已知:如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,AF⊥BE于点F,那么线段BE,CE,AF三者之间的数量关系是________. 38、如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论: ①EF=BE+
32、CF; ②∠BGC=90°+ ∠A; ③点G到△ABC各边的距离相等; ④设GD=m,AE+AF=n,则S△AEF=mn. 其中正确的结论是________. 39、如图,直线l1∥l2∥l3 , 且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图放置,顶点A、B、C恰好分别落在三条直线上,则△ABC的面积为________. 40、如图,在△ABC中,∠B=45°,∠ACB=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,点F在线段AG上,延长DA至点E,使AE=AF,连接EG,CG,DF,若EG=DF,点G在AC的垂直平分
33、线上,则 的值为________ 三、解答题(共10题;共50分) 41、如图,在正方形ABCD中,AB=2,点P是边BC上的任意一点,E是BC延长线上一点,连结AP,作PFAP交DCE的平分线CF上一点F,连结AF交边CD于点G. (1)求证:AP=PF; (2)设点P到点B的距离为x,线段DG的长为y,试求y关于x的函数关系式,并写出自变量x的取值范围; (3)当点P是线段BC延长线上一动点,那么(2)式中y与x的函数关系式保持不变吗?如改变,试直接写出函数关系式. 42、(2014•本溪)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+
34、∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF. (1)如图①,当∠BAE=90°时,求证:CD=2AF; (2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由. 43、(2014•朝阳)已知Rt△ABC中,AC=BC=2.一直角的顶点P在AB上滑动,直角的两边分别交线段AC,BC于E.F两点 (1)如图1,当=且PE⊥AC时,求证:=; (2)如图2,当=1时(1)的结论是否仍然成立?为什么? (3)在(2)的条件下,将直角∠EPF绕点P旋转,设∠BPF=α(0°<α<90°).连结EF,当△CEF的周长等于2+
35、时,请直接写出α的度数. 44、(2014•大连)如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE. (1)图1中是否存在与∠BDE相等的角?若存在,请找出,并加以证明,若不存在,说明理由; (2)求证:BE=EC; (3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=a时,求BE的长(用含k、a的式子表示).
36、 45、(2014•丹东)在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1 , 旋转角为θ(0°<θ<90°),连接AC1、BD1 , AC1与BD1交于点P. (1)如图1,若四边形ABCD是正方形. ①求证:△AOC1≌△BOD1 . ②请直接写出AC1 与BD1的位置关系. (2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1 . 判断AC1与BD1的位置关系,说明理由,并求出k的值. (3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1 , 设AC1=kBD1 . 请直接
37、写出k的值和AC12+(kDD1)2的值. 46、(2014•阜新)已知,在矩形ABCD中,连接对角线AC,将△ABC绕点B顺时针旋转90°得到△EFG,并将它沿直线AB向左平移,直线EG与BC交于点H,连接AH,CG. (1)如图①,当AB=BC,点F平移到线段BA上时,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想; (2)如图②,当AB=BC,点F平移到线段BA的延长线上时,(1)中的结论是否成立,请说明理由; (3)如图③,当AB=nBC(n≠1)时,对矩形ABCD进行如已知同样的变换操作,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想. 47
38、2014•锦州)(1)已知正方形ABCD中,对角线AC与BD相交于点O,如图①,将△BOC绕点O逆时针方向旋转得到△B′OC′,OC′与CD交于点M,OB′与BC交于点N,请猜想线段CM与BN的数量关系,并证明你的猜想. (2)如图②,将(1)中的△BOC绕点B逆时针旋转得到△BO′C′,连接AO′、DC′,请猜想线段AO′与DC′的数量关系,并证明你的猜想. (3)如图③,已知矩形ABCD和Rt△AEF有公共点A,且∠AEF=90°,∠EAF=∠DAC=α,连接DE、CF,请求出的值(用α的三角函数表示). 48、(2014•辽阳)(1)如图1,在平行四边形ABCD中,对
39、角线AC、BD相交于O点,过点O的直线l与边AB、CD分别交于点E、F,绕点O旋转直线l,猜想直线l旋转到什么位置时,四边形AECF是菱形.证明你的猜想. (2)若将(1)中四边形ABCD改成矩形ABCD,使AB=4cm,BC=3cm, ①如图2,绕点O旋转直线l与边AB、CD分别交于点E、F,将矩形ABCD沿EF折叠,使点A与点C重合,点D的对应点为D′,连接DD′,求△DFD′的面积. ②如图3,绕点O继续旋转直线l,直线l与边BC或BC的延长线交于点E,连接AE,将矩形ABCD沿AE折叠,点B的对应点为B′,当△CEB′为直角三角形时,求BE的长度.请直接写出结果,不必写解答过程.
40、 49、(2014•盘锦)已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF. (1)如图1,当点P与点G分别在线段BC与线段AD上时. ①求证:DG=2PC; ②求证:四边形PEFD是菱形; (2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想. 50、(2014•铁岭)如图,四边形ABCD为菱形,∠BAD=60°,E为直线BD上的动点(点E不与点
41、B和点D重合),直线CE绕C点顺时针旋转60°与直线AD相交于点F,连接EF. (1)如图①,当点E在线段BD上时,∠CEF= 度; (2)如图②,当点E在BD延长线上时,试判断∠DEF+∠DFE与∠CEF度数之间的关系,并说明理由; (3)如图③,若四边形ABCD为平行四边形,∠DBC=∠DCB=45°,E为直线BD上的动点(点E不与点B和点D重合),射线CE绕C点顺时针旋转45°与直线AD相交于点F,连接EF,探究∠DEF+∠DFE与∠CEF度数之间的关系.(直接写出结果) 答案解析部分 一、综合题 1、【答案】(1)解:∵四边
42、形ABCD是正方形, ∴AB=AD,∠BAE+∠EAD=90°, 又∵四边形AEFG是正方形, ∴AE=AG,∠EAD+∠DAG=90°, ∴∠BAE=∠DAG. 在△ABE与△ADG中, ∵ , ∴△ABE≌△ADG(SAS), ∴BE=DG (2)解:①如图1,作BN⊥AE于点N, ∵∠BAN=45°,AB=2, ∴AN=BN= . 在△BEN中, ∵BN= ,NE=3 ﹣ , ∴BE= ; ②如图1,作AM⊥BE于点M,则S△ABE= AE•BN= ×3 × = . 又∵S△ABE= BE•AM= × ×AM= , ∴AM= ,即点A到BE的距离
43、 (3)解:解:①如图2,连接AC,AF,CF, ∵四边形ABCD与AEFG是正方形, ∴∠ACD=∠AFE=45°, ∵∠DCE=90° ∴点A,C,E,F四点共圆, ∵∠AEF是直角, ∴AF是直径, ∴∠ACF=90°, ∵∠ACD=45°, ∴∠FCD=45° ②如图3,连接AC,AF,FG,CG 由(1)知∵△ABE≌△ADG, ∴∠ABE=∠ADG=90°, ∴DG和CG在同一条直线上, ∴∠AGD=∠AGC=∠BAG, ∵四边形ABCD与AEFG是正方形, ∴∠BAC=∠FAG=45°, ∴∠BAG+∠GAC=45°,∠BAG+∠BAF=45°,
44、 ∴∠AGD+∠GAC=45°, ∴∠BAG+∠BAF+∠AGD+∠GAC+∠AGF=180°, ∴点A,C,G,F四点共圆, ∵∠AGF是直角, ∴AF是直径, ∴∠ACF=90°, ∴∠FCD=90°+45°=135° 综上所述,∠FCD的度数为45°或135°. 【考点】全等三角形的应用,旋转的性质 【解析】【分析】(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再根据余角的性质,可得∠BAE=∠DAG,然后利用“SAS”证明△ABE≌△A
45、DG,根据全等三角形对应边相等证明即可;(2)①作BN⊥AE于点N,根据勾股定理得出AN=BN= ,在△BEN中,根据勾股定理即可得出结论;②作AM⊥BE于点M,根据S△ABE= AE•BN= BE•AM=3即可得出结论;(3)分两种情况:①E在BC的右边,连接AC,AF,CF,利用点A,C,E,F四点共圆求解,②E在BC的左边,连接AC,AF,FG,CG,首先确定DG和CG在同一条直线上,再利用点A,C,G,F四点共圆求解. 2、【答案】(1)解:作BP⊥AD于P,BQ⊥MC于Q,如图1, ∵矩形AOCD绕顶点A(0,5)逆时针方向旋转得到矩形ABEF
46、 ∴AB=AO=5,BE=OC=AD,∠ABE=90°, ∵∠PBQ=90°, ∴∠ABP=∠MBQ, ∴Rt△ABP∽Rt△MBQ, ∴, 设BQ=PD=x,AP=y,则AD=x+y,BM=x+y﹣2, ∴, ∴PB•MQ=xy, ∵PB﹣MQ=DQ﹣MQ=DM=1, ∴(PB﹣MQ)2=1,即PB2﹣2PB•MQ+MQ2=1, ∴52﹣y2﹣2xy+(x+y﹣2)2﹣x2=1,解得x+y=7, ∴BM=5, ∴BE=BM+ME=5+2=7, ∴AD=7; (2)解:∵AB=BM, ∴Rt△ABP≌Rt△MBQ, ∴BQ=PD=7﹣AP,MQ=AP, ∵
47、BQ2+MQ2=BM2 , ∴(7﹣MQ)2+MQ2=52 , 解得MQ=4(舍去)或MQ=3, ∴BQ=7﹣3=4, ∴S阴影部分=S梯形ABQD﹣S△BQM =×(4+7)×4﹣×4×3 =16; 设直线AM的解析式为y=kx+b, 把A(0,5),M(7,4)代入得,解得, ∴直线AM的解析式为y=﹣x+5; (3)解:设经过A、B、D三点的抛物线的解析式为y=ax2+bx+c, ∵AP=MQ=3,BP=DQ=4, ∴B(3,1), 而A(0,5),D(7,5), ∴, 解得, ∴经过A、B、D三点的抛物线的解析式为y=x2﹣x+5; (4)解:当点P
48、在线段AM的下方的抛物线上时,作PK∥y轴交AM于K,如图2 设P(x,﹣x+5),则K(x,﹣x+5),则KP=﹣+x,根据三角形面积公式可得到•(﹣x2+x)•7=,解得x1=3,x2=,于是得到此时P点坐标为(3,1)、(,);再求出过点(3,1)与(,)的直线l的解析式为y=﹣x+,则可得到直线l与y轴的交点A′的坐标为(0,),所以AA′=,然后把直线AM向上平移个单位得到l′,直线l′与抛物线的交点即为P点,由于A″(0,),则直线l′的解析式为y=﹣x+,再通过解方程组得P点坐标为(3,1)、 ()、()、().
49、考点】一次函数图象与几何变换,二次函数图象与几何变换 【解析】 【解答】(1)作BP⊥AD于P,BQ⊥MC于Q,如图1,根据旋转的性质得AB=AO=5,BE=OC=AD,∠ABE=90°,利用等角的余角相等得∠ABP=∠MBQ,可证明Rt△ABP∽Rt△MBQ得到,设BQ=PD=x,AP=y,则AD=x+y,所以BM=x+y﹣2,利用比例性质得到PB•MQ=xy,而PB﹣MQ=DQ﹣MQ=DM=1,利用完全平方公式和勾股定理得到52﹣y2﹣2xy+(x+y﹣2)2﹣x2=1,解得x+y=7,则BM=5,BE=BM+ME=7,所以AD=7;
50、 (2)由AB=BM可判断Rt△ABP≌Rt△MBQ,则BQ=PD=7﹣AP,MQ=AP,利用勾股定理得到(7﹣MQ)2+MQ2=52,解得MQ=4(舍去)或MQ=3,则BQ=4,根据三角形面积公式和梯形面积公式,利用S阴影部分=S梯形ABQD﹣S△BQM进行计算即可;然后利用待定系数法求直线AM的解析式; (3)先确定B(3,1),然后利用待定系数法求抛物线的解析式; (4)当点P在线段AM的下方的抛物线上时,作PK∥y轴交AM于K,如图2设P(x,﹣x+5),则K(x,﹣x+5),则KP=﹣+x,根据三角形面积公式得到•(﹣x2+x)•7=,解得x1=3,x2=,于是得到此时P点坐标为
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4009-655-100 投诉/维权电话:18658249818