ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:64.08KB ,
资源ID:4303323      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4303323.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(上海高一数学常用三角函数复习大全.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

上海高一数学常用三角函数复习大全.doc

1、上海高一数学常用三角函数公式大全一、基本概念1. 角度弧度a. 正角(顺时针转),负角(逆时针转),零角b. 360o=2p c. 弧度计算: a= lr; 想想通过扇形面积求弧度怎么求?2. 任意角的三角比a. r= x2+y20b. sina= yr cosa= xr tana= yx c. seca= ry csca= rx cota= xy 与上面定义互为倒数二、诱导公式 (不用背,记住规律,想想就知道答案)公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k)sin (kZ)cos(2k)cos (kZ)tan(2k)tan (kZ)cot(2k)cot (kZ)公式

2、二:设为任意角,+的三角函数值与的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式三:任意角与 -的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式四:利用公式二和公式三可以得到-与的三角函数值之间的关系:sin()sincos()costan()tancot()cot公式五:利用公式一和公式三可以得到2-与的三角函数值之间的关系:sin(2)sincos(2)costan(2)tancot(2)cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2)coscos(/2)sintan(/2)cotco

3、t(/2)tansin(/2)coscos(/2)sintan(/2)cotcot(/2)tansin(3/2)coscos(3/2)sintan(3/2)cotcot(3/2)tansin(3/2)coscos(3/2)sintan(3/2)cotcot(3/2)tan(以上kZ)注意:在做题时,将a看成锐角来做会比较好做。诱导公式记忆口诀 规律总结上面这些诱导公式可以概括为:对于/2*k (kZ)的三角函数值,当k是偶数时,得到的同名函数值,即函数名不改变;当k是奇数时,得到相应的余函数值,即sincos;cossin;tancot,cottan.(奇变偶不变)然后在前面加上把看成锐角时原

4、函数值的符号。(符号看象限)例如:sin(2)sin(4/2),k4为偶数,所以取sin。当是锐角时,2(270,360),sin(2)0,符号为“”。所以sin(2)sin上述的记忆口诀是:奇变偶不变,符号看象限。(理解,并练习)各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”(要求理解并能说明为什么)这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“”;第二象限内只有正弦是“”,其余全部是“”;第三象限内切函数是“”,弦函数是“”;第四象限内只有余弦是“”,其余全部是“”上述记忆口诀,一全正,二正弦,三内切,四余弦还有

5、一种按照函数类型分象限定正负:函数类型 第一象限 第二象限 第三象限 第四象限正弦 .余弦 .正切 .余切 .三、同角三角函数基本关系同角三角函数的基本关系式 (理解记忆,不能死记硬背)倒数关系:tan cot1sin csc1cos sec1商的关系:sin/costansec/csccos/sincotcsc/sec平方关系:(知道如何证明自然就记住了)sin2()cos2()11tan2()sec2()1cot2()csc2()四、两角和公式 (后面公式的基础很重要,正反两个方向都要记住,并能灵活应用)sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sin

6、AcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB (可通过上面的公式推导下面的公式,试试看)tan(A+B) =tan(A-B) =cot(A+B) =cot(A-B) =四、倍角半角公式 倍角公式 (利用两角和公式证明)tan2A = Sin2A=2SinACosACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tanatan(+a)tan(-a)半角公式

7、(怎么证明?一定要知道,条件要知道,根据A的大小可正可负)sin()= cos()=tan()= cot()= tan()=万能公式 (要求能证明)sina= cosa= tana=四、和差化积积化和差 和差化积 (要求能证明)sina+sinb=2sincos sina-sinb=2cossincosa+cosb = 2coscos cosa-cosb = -2sinsintana+tanb=积化和差 (要求能证明)sinasinb = -cos(a+b)-cos(a-b) cosacosb = cos(a+b)+cos(a-b)sinacosb = sin(a+b)+sin(a-b) co

8、sasinb = sin(a+b)-sin(a-b)五、其它变换 (灵活应用上述公式,重要,要求能够证明,不要求死记)asina+bcosa=sin(a+c) 其中tanc=asin(a)-bcos(a) = cos(a-c) 其中tan(c)=1+sin(a) =(sin+cos)21-sin(a) = (sin-cos)2六、正余弦定理和解斜三角形1. 面积公式: SABC= 12acsinB= 12bcsinA= 12absinC2. 正弦定理:sinAa= sinBb= sinCc or asinA= bsinB= csinC=2R3. 余弦定理:a. a2=b2+ c2-2bccos

9、A cosA= b2+c2-a2 2bcb. b2=a2+ c2-2accosB cosB= a2+c2-b2 2acc. c2=a2+ b2-2abcosCcosC= a2+b2-c2 2ab七、三角函数侧重理解,掌握,不要死记硬背1. 正弦函数 y=sinx; 余弦函数 y=cosxa. 定义域:(,)b. 值域:1, 1;最大最小值i. 取最大(小)值时x的集合 ii. 取0值时x的集合c. 性质:i. 周期性,周期:2k (kZ, k0); 最小正周期:2pii. 奇偶性:正弦函数为奇函数;余弦函数为偶函数iii. 单调区间(长度为p的区间)iv. 图像,根据区间-,的图像做平移即可。

10、2. 正切函数(余切函数) 下面以正切为例a. 定义域,注意有些点没有 xR, xk+2, kZ b. 值域:(,)c. 周期性:为周期,也是最小正周期d. 奇偶性:奇函数e. 正切函数在(k-2, k+2) (kZ)上是增函数;余切函数反之3. 求函数 y=Asinwx+j (w0)的: 定义域:(,) 值域:A, A 是周期函数.周期T2k (kZ, k0); 最小正周期:2 伸缩和平移:y=Asinwx+j Asinw(x+jw) (w0) 正弦波的一些概念o A 为振幅 (表示强度)o f= 1T=2 是频率(周期的倒数,表示每单位时间(秒)内循环往复震动多少次)o 相位:wx+j (在一个循环周期中的位置)o 初相:j (零时间点时的相位)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服