1、第一单元分数加减法一、分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。二、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。2、真分数和假分数: 分子比分母小的分数叫做真分数,真分数小于1。 分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。 由整数部分和分数部分组成的分数叫做带分数。3、假分数与带分数的互化: 把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。 把带分数化成假分数,用
2、整数部分乘以分母加上分子作分子,分母不变。三、分数的基本质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。四、分数的大小比较同分母分数,分子大的分数就大,分子小的分数就小; 同分子分数,分母大的分数反而小,分母小的分数反而大。 异分母分数,先化成同分母分数(分数单位相同),再进行比较。(依据分数的基本性质进行变化)五、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。 (并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)注意:分数加减法中
3、,计算结果能约分的,一般要约分成最简分数。六、分数和小数的互化:1、小数化分数:将小数化成分母是10、100、1000的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。(一般保留三位小数。)如果分母只含有2或5的质因数,这个分数能化成有限小数。如果含有2或5以外的质因数,这个分数就不能化成有限小数。3、分数和小数比较大小:一般把分数变成小数后比较更简便。七、分数的加法和减法1、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。2、分数加减混和运算
4、的运算顺序和整数加减混和运算的运算顺序相同。在计算过程,整数的运算律对分数同样适用。3、同分母分数加、减法 :同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数。4、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。2第二单元长方体(一)1、认识长方体、正方体,了解各部分的名称。(1) 表面平平的部分称为面;两面相交便形成了一条棱;而三条棱又交于一点,这个点叫作顶点。(2) 左面的面叫左面,右面的面叫右面,上面的面叫上面,下面的面叫下面(或叫底面),前面的面叫前面,后面的面叫
5、后面。(3) 长方体有12条棱,这12条棱中有4条长、4条宽和4条高。正方体的12条棱的长度都相等。(4)正方体是特殊的长方体。因为正方体可以看成是长、宽、高都相等的长方体。(5)长方体的棱长总和=(长+宽+高)4=长4+宽4+高4长方体的宽=棱长总和4-长-高长方体的长=棱长总和4-宽-高长方体的高=棱长总和4-宽-长正方体的棱长总和=棱长12正方体的棱长=棱长总和122、展开与折叠(正方体展开共11种)第一类:141型6个第二类:231 型 3个第三类: 222 型(楼梯形)1个第四类:3-3 型 1个注意:(1)田字型与凹字型的全错。(2)正方体展开至少和最多都只剪开7条棱。3、长方体的
6、表面积(1)表面积的意义:是指六个面的面积之和。(3)长方体的表面积=长宽2 +长高2 +宽高2=(长宽长高宽高)2(4)正方体的表面积=棱长棱长64、露在外面的面(1)在观察中,通过不同的观察策略进行观察。如:一种是看每个纸箱露在外面的面,再加到一起;另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起。例如:如图,4个棱长都是10厘米的正方体堆放在墙角处,露在外面的面积是多少?解:首先应找出有多少个面露在外面:如果用法一的方法来找:3+1+2+3=9(个);如果用法二的方法来找:从上面看有3个面,从右侧面看有2个面,从正面看有4个面,共有3+2+4=9(
7、个)。因为每个面都是面积相等的正方形,所以露在外面的面积=10109=900(厘米2)答:露在外面的面积一共是900平方厘米。(2)发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。(3)求露在外面的面的面积=棱长棱长露在外面的面的个数。3第三单元分数乘法分数乘法(一)知识点:(1)理解分数乘整数的意义:分数乘整数意义同整数乘法意义相同,就是求几个相同加数的和的简便运算。(2)分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。(3)计算时,应该先约分再计算。分数乘法(二) 知识点 :(1) 整数乘分数的意义:求一个数的几分之几是多少。(2) 理解打折的
8、含义。例如:九折,是指现价是原价的十分之九。补充知识点: 打几折就是指现价是原价的百分之几,例如八五折,是指现价是原价的百分之八十五。现价=原价折扣原价=现价折扣折扣=现价原价买一赠一打几折:出一个的钱拿两个货品,即 1除以2等于零点五,五折买三赠一打几折:出三个的钱拿四个货品,即 3除以4等于零点七五,七五折分数乘法(三) 知识点:1、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。(结果是最简分数。)2、比较分数相乘的积与每一个乘数的大小: 真分数相乘积小于任何一个乘数; 真分数与假分数相乘积大于真分数小于假分数。 乘数乘以1的数,积1的数,积乘数;3、求一个数的
9、几分之几是多少,用乘法。(即已知整体和部分量相对应的分率,求部分量,用乘法)4、倒数(1)如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。(2)当互为倒数的两个数分别作为长方形的长和宽时,长方形的面积是1。(3)1的倒数仍是1;0没有倒数。0没有倒数,是因为0不能作除数。(4)求一个数的倒数的方法:把这个数的分子、分母调换位置;其中整数可以看成分母是1的分数。4第四单元长方体(二)一、体积与容积概念体积:物体所占空间的大小叫作物体的体积。(从外部测量)容积:容器所能容纳入体的体积叫做物体的容积。(从内部测量)注意:同一个容器,体积大于容积;当
10、容器壁很薄时,容积近等于体积。如果容器壁忽略不计时,容积等于体积。几个物体拼在一起时,它们的体积不发生改变(它们占空间的大小没有发生变化)二、体积单位1、认识体积、容积单位常用的体积单位:立方米(m3;)、立方分米(dm3;)、立方厘米(cm3;)常用的容积单位:升、毫升,1升=1立方分米、1毫升=1立方厘米2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义: 手指头、苹果、火柴盒体积较小,可用cm3;作单位 西瓜、粉笔盒体积稍大,可以用dm3;作单位 矿泉水瓶、墨水瓶可以用毫升作单位热水瓶等较大盛液体容器、冰箱可以用升作单位我们饮用的自来水用“立方米”作单位三、长方体的体积1
11、、长方体、正方体体积的计算方法长方体的体积=长宽高,长用a表示,宽用b表示,高用h表示,体积用V表示,体积可表示为V=abh正方体的体积=棱长棱长棱长,如果棱长用a表示,体积可表示为V=a3;=aaa长方体(正方体)的体积=底面积高 V=Sh补充知识点:长方体的体积=横截面面积长2、能利用长方体(正方体)的体积及其他两个条件求出问题。如:长方体的高=体积长宽长=体积高宽 宽=体积高长注意:计算体积时,单位一定要统一;表面积与体积表示的意义不一样,单位不同,无法比较大小。四、体积单位的换算 认识体积、容积单位。常用的体积单位有:立方厘米(cm3;)、立方分米(dm3;) 、立方米(m3;)。常用
12、的容积单位有:升(L)、毫升(m L)知识点:1、体积、容积单位之间的进率:相邻体积、容积单位间进为10001米3;=1000分米3; 1分米3;=1000厘米3;1升=1分米3; 1毫升=1厘米3; 1升=1000毫升2、体积、容积单位之间的换算方法:体积、容积单位之间的换算,由高级单位化成低级单位乘进率,由低级单位化成高级单位除以进率五、有趣的测量1、不规则物体体积的测量方法:一般都是把不规则物体的体积转化成可通过测量计算的水的体积(注意液面是“升高了”还是“升高到”)注意:在测量体积较小的不规则物体的体积时,要先测量出一定数量物体的体积,再算出一个物体的体积2、不规则物体体积的计算方法:
13、现在液体体积减去原来液体体积5第五单元分数除法一、分数除法(一)分数除以整数的意义及计算方法。分数除以整数,就是求这个数的几分之几是多少。分数除以整数(0除外)等于乘这个数的倒数。二、分数除法(二)1、一个数除以分数的意义和基本算理:一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。2、一个数除以分数的计算方法: 除以一个数(0除外)等于乘这个数的倒数。3、比较商与被除数的大小。除数小于1,商大于被除数;除数等于1。商等于被除数;除数大于1,商小于被除数。三、分数除法(三)1、列方程“求一个数的几分之几是多少”的方法:(1)解方程法:设未知数,这里的单位“1”未知,所
14、以设单位“1”为x,再根据分数乘法的意义列出等量关系式解这个方程。(2)算术方法:用部分量除以它所占整体的几分之几 (对应量对应分率=标准量)2、判断单位“1”:一般来说,某个数的几分之几,“某个数”就是单位“1”数比谁多几分之几或少几分之几,“比”字后面的数量就是单位“1”谁是谁的几分之几,“是”字后面的数量就是单位“1”四、倒数1、理解倒数的意义:如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。2、求倒数的方法:把这个数的分子和分母调换位置。3、1的倒数仍是1;0没有倒数。(0没有倒数,是因为在分数中,0不能做分母。)6第六单元确定位置确
15、定位置(一)知识点1、 认识方向与距离对确定位置的作用。2、 能根据方向和距离确定物体的位置。3、 能描述简单的路线图。确定位置(二)知识点了解确定物体位置的方法。能根据平面图确定图中任意两地的相对位臵(以其中一地为观察点,度量另一地所在方向以及两地的距离)1、数对:一般由两个数组成。 作用:数对可以表示物体的位置,也可以确定物体的位置。2、行和列的意义:竖排叫做列,横排叫做行。3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)(1)在平面直角坐标系中X轴上的坐标表示列,y轴上
16、的坐标表示行。如:数对(3,2)表示第三列,第二行。(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。6、图形平移变化规律:(1)图形向左平移,行数不变,列数减去平移的格数。 图形向右平移,行数不变,列数加上平移的格数。(2) 图形向上平移,列数不变,行数加上平移的格数。 图形向下平移,列数不变,行数减去平移的格数。7第七单元用
17、方程解决问题1、列方程解应用题的步骤:(1)找到题中的等量关系式(2)解设所求量为x(3)根据等量关系式列出相应的方程(4)解答方程,注意计算结果不带单位(5)检验做答2、在有多个未知数量的应用题中,通常应将1倍数设为x,举例如下:例:爸爸的年龄是儿子年龄的4倍,父子俩年龄之和为40,求父亲和儿子的年龄各是多少岁?解:首先根据题意找出等量关系式:爸爸年龄+儿子年龄=40因为儿子年龄是1倍数,所以:设儿子年龄为x岁,那么爸爸年龄就是4x,代入等量关系式得:爸爸年龄为:4x=48=32(岁)答:爸爸的年龄为32岁,儿子的年龄为8岁。3、相遇问题涉及到的公式:路程=速度时间时间=路程速度相距距离=速
18、度和相遇时间8第八单元数据的表示和分析1、条形统计图优点:很容易看出各种数量的多少。注意:画条形统计图时,直条的宽窄必须相同。取一个单位长度表示数量的多少要根据具体情况而确定;复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。2、折线统计图用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。3、扇形统计图用整个圆的面积表示总数,用扇形面积表示各部分所占总数
19、的百分数。优点:很清楚地表示出各部分同总数之间的关系。2015北师大五年级下册数学知识点总结第一单元:分数加减法一、分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。 2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。 二、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。 2、真分数和假分数: 分子比分母小的分数叫做真分数,真分数小于1。 分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。 由整数部分和分数部分组成的分数叫做带分数。 2、假分数与带分数的互化:
20、 把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。 把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。 三、分数的基本质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。 2、分数的大小比较: 同分母分数,分子大的分数就大,分子小的分数就小; 同分子分数,分母大的分数反而小,分母小的分数反而大。 异分母分数,先化成同分母分数(分数单位相同),再进行比较。(依据分数的基本性质进行变化) 四、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。2、约分:把一个分数化成和它相等,但分子和分母都比较小的分
21、数,叫做约分。 (并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止) 注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。 五、分数和小数的互化:1、小数化分数:将小数化成分母是10、100、1000?的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。 2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。(一般保留三位小数。)如果分母只含有2或5的质因数,这个分数能化成有限小数。如果含有2或5以外的质因数,这个分数就不能化成有限小数。3、分数和小数比较大小:一般把分数变成小数后比较更简便。
22、 六、分数的加法和减法 1、分数加减法(1)分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。(2)分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。在计算过程,整数的运算律对分数同样适用。(3)同分母分数加、减法 :同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数。(4)异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。第二单元:长方体(一)长方体(一) 长方体的认识知识点:1、认识长方体、正方体,了解各部分的名称。(1) 表面平平的部
23、分称为面;两面相交便形成了一条棱;而三条棱又交于一点,这个点叫作顶点。 (2) 左面的面叫左面,右面的面叫右面,上面的面叫上面,下面的面叫下面(或叫底面),前面的面叫前面,后面的面叫后面。(3) 长方体有12条棱,这12条棱中有4条长、4条宽和4条高。正方体的12条棱的长度都相等。(4)、正方体是特殊的长方体。因为正方体可以看成是长、宽、高都相等的长方体。 (5)、长方体的棱长总和=(长+宽+高)4或者是长4+宽4+高4 长方体的宽=棱长总和4-长-高 长方体的长=棱长总和4-宽-高长方体的高=棱长总和4-宽-长 正方体的棱长总和=棱长12 正方体的棱长=棱长总和12 2.展开与折叠知识点:正
24、方体展开共11种 141 型 6个231 型 3个 222 型 1个 楼梯形 3-3 型 1个注意:(1)田字型与凹字型的全错。 (2)正方体展开至少和最多都只剪开7条棱。 3、长方体的表面积 知识点: (1)、表面积的意义:是指六个面的面积之和。 (2)、长方体和正方体表面积的计算方法: (3)、长方体的表面积(6个面)=长宽2 +长高2 +宽高2 (上下面) (前后面) (左右面) S长=(长宽长高宽高)2 (4)、正方体的表面积(6个面)=棱长棱长6 S正=棱长棱长6 (一个面的面积) 4、露在外面的面 知识点:(1)、在观察中,通过不同的观察策略进行观察。如::一种是看每个纸箱露在外面
25、的面,再加到一起;另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起。 (2)、发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。(3)、求露在外面的面的面积=棱长棱长露在外面的面的个数。(一个面的面积)第三单元分数乘法分数乘法(一)知识点:(1)理解分数乘整数的意义:分数乘整数意义同整数乘法意义相同,就是求几个相同加数的和的简便运算。 (2)分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。 (3)计算时,应该先约分再计算。 分数乘法(二) 知识点 :(1)、整数乘分数的意义:求一个数的几分之几是多少。(2)、理
26、解打折的含义。例如:九折,是指现价是原价的十分之九。 补充知识点:1、打几折就是指现价是原价的百分之几,例如八五折,是指现价是原价的百分之八十五。 现价=原价折扣 原价=现价折扣 折扣=现价原价2、买一赠一打几折: 出一个的钱拿两个货品 即 1除以2等于零点五 五折买三赠一打几折: 出三个的钱拿四个货品 即 3除以4等于零点七五 七五折 分数乘法(三) 知识点: 1、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。(结果是最简分数。) 2、比较分数相乘的积与每一个乘数的大小:真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。 3、比较分数相乘的积
27、与每一个乘数的大小。乘数乘以1的数,积1的数,积乘数; 真分数相乘积小于任何一个乘数; 真分数与假分数相乘积大于真分数小于假分数。 4、求一个数的几分之几是多少,用乘法。(即已知整体和部分量相对应的分率,求部分量,用乘法) 5、倒数、 (1)、如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。 (2)、当互为倒数的两个数分别作为长方形的长和宽时,长方形的面积是1。 (3)、1的倒数仍是1;0没有倒数。0没有倒数,是因为0不能作除数。 (4)、求一个数的倒数的方法:把这个数的分子、分母调换位置;其中整数可以看成分母是1的分数。第四单元:长方体(二
28、)4.1体积与容积 知识点: 1、体积与容积的概念:体积:物体所占空间的大小叫作物体的体积。(从外部测量) 容积:容器所能容纳入体的体积叫做物体的容积。(从内部测量)注意:同一个容器,体积大于容积;当容器壁很薄时,容积近等于体积。如果容器壁忽略不计时,容积等于体积。 几个物体拼在一起时,它们的体积不发生改变(它们占空间的大小没有发生变化) 4.2体积单位 知识点: 1、认识体积、容积单位常用的体积单位:立方米(3米)、立方分米(3分米)、立方厘米(3厘米) 常用的容积单位:升、毫升、1升=13分米、1毫升=13厘米2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义:手指头、苹果
29、、火柴盒体积较小,可用3厘米作单位 西瓜、粉笔盒体积稍大,可以用3分米作单位 矿泉水瓶、墨水瓶可以用毫升作单位 热水瓶等较大盛液体容器、冰箱可用生升作单位我们饮用的自来水用“立方米”作单位。 4.3长方体的体积 知识点:1、长方体、正方体体积的计算方法 长方体的体积=长宽高,长用a表示,宽用b表示,高用h表示,体积用V表示,体积可表示为V=abh 正方体的体积=棱长*棱长*棱长,如果棱长用a表示,体积可表示为V=3a=aaa 长方体(正方体)的体积=底面积高 V=Sh 补充知识点:长方体的体积=横截面面积长2、能利用长方体(正方体)的体积及其他两个条件求出问题。如:长方体的高=体积长宽 长=体
30、积高宽 宽=体积高长注意:计算体积时,单位一定要统一;表面积与体积表示的意义不一样,单位不同,无法比较大小 4.4体积单位的换算 认识体积、容积单位。 常用的体积单位有:立方厘米(cm3)、立方分米(dm3) 、立方米(m3)。 常用的容积单位有:升(L)、毫升(m L)知识点:1、体积、容积单位之间的进率:相邻体积、容积单位间进率为10001米3=1000分米3 1分米3=1000厘米3 1升=1分米3 1毫升=1厘米3 1升=1000毫升2、体积、容积单位之间的换算方法:体积、容积单位之间的换算,由高级单位化成低级单位乘进率, 由低级单位化成高级单位除以进率 4.5有趣的测量 知识点:1不
31、规则物体体积的测量方法:一般都是把不规则物体的体积转化成可通过测量计算的水的体积(注意液面是“升高了”还是“升高到”)注意:在测量体积较小的不规则物体的体积时,要先测量出一定数量物体的体积,再算出一个物体的体积2不规则物体体积的计算方法:现在液体体积减去原来液体体积第五单元:分数除法分数除法(一)知识点:1、分数除以整数的意义及计算方法。分数除以整数,就是求这个数的几分之几是多少。分数除以整数(0除外)等于乘这个数的倒数。 分数除法(二)知识点:1、一个数除以分数的意义和基本算理:一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。2、一个数除以分数的计算方法: 除以一
32、个数(0除外)等于乘这个数的倒数。 3、比较商与被除数的大小。除数小于1,商大于被除数; 除数等于1。商等于被除数; 除数大于1,商小于被除数。 分数除法(三) 知识点:1、列方程“求一个数的几分之几是多少”的方法: (1)、解方程法:设未知数,这里的单位“1”未知,所以设单位“1”为x,再根据分数乘法的意义列出等量关系式解这个方程。 (2)、算术方法:用部分量除以它所占整体的几分之几 (对应量对应分率=标准量) 2、判断单位“1”:一般来说,某个数的几分之几,“某个数”就是单位“1” 数比谁多几分之几或少几分之几,“比”字后面的数量就是单位“1” 谁是谁的几分之几,“是”字后面的数量就是单位
33、“1” 倒数 知识点:1、理解倒数的意义: 如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。2、求倒数的方法:把这个数的分子和分母调换位置。3、1的倒数仍是1;0没有倒数。0没有倒数,是因为在分数中,0不能做分母。第六单元确定位置确定位置(一)知识点1、 认识方向与距离对确定位置的作用。 2、 能根据方向和距离确定物体的位置。 3、 能描述简单的路线图。 确定位置(二)知识点 了解确定物体位置的方法。能根据平面图确定图中任意两地的相对位臵(以其中一地为观察点,度量另一地所在方向以及两地的距离) 1数对:一般由两个数组成。 作用:数对可以表示物
34、体的位置,也可以确定物体的位置。 2行和列的意义:竖排叫做列,横排叫做行。3数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)4两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。 5两个数对,后一个数相同,说明它们所表示
35、物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。 6图形平移变化规律:(1)图形向左平移,行数不变,列数减去平移的格数。 图形向右平移,行数不变,列数加上平移的格数。 (2) 图形向上平移,列数不变,行数加上平移的格数。 图形向下平移,列数不变,行数减去平移的格数。第七单元:用方程解决问题1、小数乘整数的意义求几个相同加数的和的简便运算。 如1:3表示的3倍是多少或3个的和的简便运算。如2:1.5表示的1.5倍是多少或1.5个的和的简便运算。2、 在乘法里:一个因数扩大几倍,另一个因数缩小相同的倍数,积不变。(这叫做积不变性质) 3、 在除法里:被除数和除数同时扩大(或缩小)相同的
36、倍数,商的大小不变。(这叫做商不变性质) 4. 乘法分配律: a(b c) = ab ac5、在含有字母的式子里,字母中间的乘号可以简记“”,也可以省略不写。(注意:加号、减号、除号以及数与数之间的乘号不能省略。字母与数字相乘简写时,数字写在字母前面。) 6、aa可以写作aa或a2 ,a2读作a的平方或a的二次方。 2a表示a+a 7、方程:含有未知数的等式称为方程。(所有的方程都是等式,但等式不一定都是等式。) 使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。 (方程的解是一个数;解方程是一个计算过程。)8、解方程原理:天平平衡。 等式左右两边同时加、减、乘、除相
37、同的数(0除外),等式依然成立。 9、解方程的方法: 方法一:利用天平平衡原理(即等式的性质)解方程;方法二:利用加、减、乘、除运算数量关系解方程。10、加、减、乘、除运算数量关系式:加法:和=加数+加数 一个加数=和-两一个加数减法:差=被减数-减数 被减数=差+减数 减数=被减数-差 乘法:积=因数因数 一个因数=积另一个因数除法:商=被除数除数 被除数=商除数 除数=被除数商 11、常用数量关系式:路程速度时间 速度路程时间 时间路程速度 总价单价数量 单价总价数量 数量总价单价总产量单产量数量 单产量总产量数量 数量总产量单价 被减数减数差 减数被减数差 被减数差减数(大数小数=相差数
38、 大数相差数=小数 小数相差数=大数 ) 因数 因数积 一个因数积另一个因数被除数除数商 除数被除数商 被除数商除数(一倍量倍数几倍量 几倍量倍数一倍量 几倍量一倍量倍数 )工作总量=工作效率工作时间 工作效率=工作总量工作时间 工作时间=工作总量工作效率 12、相遇问题:特点:必须是同时的 可根据不同的行程进行分析。 路程=速度和相遇时间 速度和=路程相遇时间相遇时间=路程速度和 速度1=路程相遇时间速度2 13、列方程解应用题的一般步骤:1、弄清题意,找出未知数,并用x表示。(解 设) 2、找出应用题中数量之间的相等关系,列方程。(找关系) 3、解方程。(列) 4、检验,写出答案。(验)第
39、八单元:数据的表示和分析1、条形统计图 优点:很容易看出各种数量的多少。 注意:画条形统计图时,直条的宽窄必须相同。 取一个单位长度表示数量的多少要根据具体情况而确定; 复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。2、折线统计图 用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。 优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。 注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。3、扇形统计图 用整个圆的面积表示总数,用扇形面积表示各部分所占总
40、数的百分数。 优点:很清楚地表示出各部分同总数之间的关系。(大数小数=相差数 大数相差数=小数 小数相差数=大数 ) 因数 因数积 一个因数积另一个因数被除数除数商 除数被除数商 被除数商除数(一倍量倍数几倍量 几倍量倍数一倍量 几倍量一倍量倍数 )工作总量=工作效率工作时间 工作效率=工作总量工作时间 工作时间=工作总量工作效率 12、相遇问题:特点:必须是同时的 可根据不同的行程进行分析。 路程=速度和相遇时间 速度和=路程相遇时间相遇时间=路程速度和 速度1=路程相遇时间速度2 13、列方程解应用题的一般步骤:1、弄清题意,找出未知数,并用x表示。(解 设) 2、找出应用题中数量之间的相
41、等关系,列方程。(找关系) 3、解方程。(列) 4、检验,写出答案。(验)第八单元:数据的表示和分析1、条形统计图 优点:很容易看出各种数量的多少。 注意:画条形统计图时,直条的宽窄必须相同。 取一个单位长度表示数量的多少要根据具体情况而确定; 复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。2、折线统计图 用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。 优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。 注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。3、扇形统计图 用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。 优点:很清楚地表示出各部分同总数之间的关系。21
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100