ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:678.58KB ,
资源ID:4198394      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4198394.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(福建专版2020中考数学复习方案第一单元数与式课时训练04因式分解.docx)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

福建专版2020中考数学复习方案第一单元数与式课时训练04因式分解.docx

1、课时训练(四) 因式分解 (限时:30分钟) |夯实基础| 1.下列变形是因式分解的是 (  ) A.xy(x+y)=x2y+xy2 B.x2+2x+1=x(x+2)+1 C.(a-b)(m-n)=(b-a)(n-m) D.ab-a-b+1=(a-1)(b-1) 2.分解因式a2b-b3结果正确的是 (  ) A.b(a+b)(a-b) B.b(a-b)2 C.b(a2-b2) D.b(a+b)2 3.多项式4x2-4与多项式x2-2x+1的公因式是 (  ) A.x-1 B.x+1 C.x2-1 D.(x-1)2 4

2、已知多项式2x2+bx+c分解因式为2(x+1)(x-2),则b,c的值为 (  ) A.b=2,c=-4 B.b=-2,c=4 C.b=-2,c=-4 D.b=3,c=-1 5.下列分解因式正确的是 (  ) A.-ma-m=-m(a-1) B.a2-1=(a-1)2 C.a2-6a+9=(a-3)2 D.a2+3a+9=(a+3)2 6.[2019·临沂]将a3b-ab进行因式分解,正确的是 (  ) A.a(a2b-b) B.ab(a-1)2 C.ab(a+1)(a-1) D.ab(a2-1) 7.分解因式:12x2-3y2=

3、    .  8.[2019·桂林]若x2+ax+4=(x-2)2,则a=    .  9.分解因式(a-b)(a-4b)+ab的结果是    .  10.[2019·北京东城二模]如果x-y=2,那么代数式(x+2)2-4x+y(y-2x)的值是    .  11.分解因式: (1)(a-b)2-4b2; (2)9x3-18x2+9x; (3)4+12(x-y)+9(x-y)2. 12.如图K4-1,有三种卡片,其中边长为a的正方形卡片1张,长、宽分别为a,b的矩形卡片4张,边长为b的正方形卡片4张.

4、你能否用这9张卡片拼成一个正方形?并说明理由.若能,请画出图形. 图K4-1 |能力提升| 13.分解因式(2x+3)2-x2的结果是 (  ) A.3(x2+4x+3) B.3(x2+2x+3) C.(3x+3)(x+3) D.3(x+1)(x+3) 14.分解因式a4-2a2+1的结果是 (  ) A.(a2+1)2 B.(a2-1)2 C.a2(a2-2) D.(a+1)2(a-1)2 15.下列多项式中,不能用完全平方公式分解因式的是 (  ) A.m+1+m24 B.-

5、x2+2xy-y2 C.-a2+14ab+49b2 D.n29-23n+1 16.分解因式:(2a-b)2+8ab=    .  17.已知x+y+2+(xy-3)2=0,则x2y+xy2=    .  18.已知a2-a-1=0,则a3-a2-a+2017=    .  19.若(x2+y2)(x2+y2+2)=15,则x2+y2=    .  20.已知x=1,y=-2 是方程mx+ny=2的解,则12m2-2mn+2n2的值为    .  21.不解方程组2x+y=6,x-3y=1,求代数式7y(x-3y)2-2(3y-x)3的值为    .  22.已知a+b=

6、4,ab=2. (1)求a2b+ab2的值; (2)求a3b+2a2b2+ab3的值; (3)求(a2-b2)2的值. |思维拓展| 23.已知一个大正方形和四个全等的小正方形,按如图K4-2两种方式摆放,求图中阴影部分的面积(用a,b表示).(用因式分解的方法解) 图K4-2 24.先阅读下列材料,再解答问题. 材料:因式分解:(x+y)2+2(x+y)+1. 解:将“x+y”看成整体,令x+y=A,则 原式=A2+2A+1=(A+1)2, 再将“A”还原

7、得:原式=(x+y+1)2. 上述解题中用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你解答下列问题: (1)因式分解:1+2(x-y)+(x-y)2=    ;  (2)因式分解:(a+b)(a+b-4)+4; (3)证明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方. 【参考答案】 1.D 2.A 3.A 4.C 5.C 6.C 7.3(2x+y)(2x-y) 8.-4 [解析]∵x2+ax+4=(x-2)2,∴a=-4. 9.(a-2b)2 10.6 11.解:(1)

8、原式=(a+b)(a-3b). (2)原式=9x(x-1)2. (3)原式=(3x-3y+2)2. 12.解:能拼成一个正方形.理由:因为a2+4ab+4b2=(a+2b)2,所以可以拼成一个边长为a+2b的正方形.图略. 13.D 14.D 15.C 16.(2a+b)2 17.-6 18.2017 19.3 20.2 21.6 [解析]7y(x-3y)2-2(3y-x)3=(x-3y)2[7y+2(x-3y)]=(x-3y)2(7y+2x-6y)=(x-3y)2(2x+y). 把2x+y=6,x-3y=1代入原式得,原式=12×6=6. 22.解:(1)原式=ab(a+b)

9、2×4=8. (2)原式=ab(a2+2ab+b2)=ab(a+b)2=2×42=32. (3)原式=(a-b)2(a+b)2=16(a-b)2=16[(a+b)2-4ab]=16×(16-4×2)=16×8=128. 23.解:设大正方形的边长为x,小正方形的边长为y, 那么x+2y=a,x-2y=b, S阴影=x2-4y2=(x+2y)(x-2y)=ab. 24.解:(1)(x-y+1)2 (2)令A=a+b,则原式变为A(A-4)+4=A2-4A+4=(A-2)2, 故(a+b)(a+b-4)+4=(a+b-2)2. (3)证明:(n+1)(n+2)(n2+3n)+1=(n2+3n)[(n+1)(n+2)]+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2, ∵n为正整数, ∴n2+3n+1也为正整数, ∴式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方. 6

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服