ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:146.51KB ,
资源ID:4137762      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4137762.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(双曲线及其标准方程习题.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

双曲线及其标准方程习题.doc

1、 [学业水平训练] 1.动点P到点M(1,0)及点N(3,0)的距离之差为2,则点P的轨迹是(  ) A.双曲线        B.双曲线的一支 C.两条射线 D.一条射线 解析:选D.依题意|PM|-|PN|=2=|MN|, 所以点P的轨迹不是双曲线,而是一条射线. 2.若方程+=1表示双曲线,则k的取值范围是(  ) A.(5,10) B.(-∞,5) C.(10,+∞) D.(-∞,5)∪(10,+∞) 解析:选A.由题意得(10-k)(5-k)<0,解得5

2、) A.-y2=1 B.y2-=1 C.-=1 D.-=1 解析:选B.椭圆+=1的焦点为F1(0,1),F2(0,-1),长轴的端点A1(0,2),A2(0,-2),所以对于所求双曲线a=1,c=2,b2=3,焦点在y轴上,双曲线的方程为y2-=1. 4.在方程mx2-my2=n中,若mn<0,则方程表示的曲线是(  ) A.焦点在x轴上的椭圆 B.焦点在x轴上的双曲线 C.焦点在y轴上的椭圆 D.焦点在y轴上的双曲线 解析:选D.将方程化为-=1. 5.若点M在双曲线-=1上,双曲线的焦点为F1,F2,且|MF1|=3|MF2|,则|MF2|等于(  )

3、 A.2 B.4 C.8 D.12 解析:选B.双曲线中a2=16,a=4,2a=8,由双曲线定义知||MF1|-|MF2||=8,又|MF1|=3|MF2|,所以3|MF2|-|MF2|=8,解得|MF2|=4. 6.设m是常数,若点F(0,5)是双曲线-=1的一个焦点,则m=________. 解析:由点F(0,5)可知该双曲线-=1的焦点落在y轴上,所以m>0,且m+9=52,解得m=16. 答案:16 7.已知双曲线的焦点分别为(0,-2)、(0,2),且经过点P(-3,2),则双曲线的标准方程是________. 解析:由题知c=2,又点P到(0,-2)和(0,

4、2)的距离之差的绝对值为2a, 2a=|-|=2,∴a=1,∴b2=c2-a2=3.又焦点在y轴上, ∴双曲线的方程为y2-=1. 答案:y2-=1 8.在平面直角坐标系xOy中,已知双曲线-=1上一点M的横坐标为3,则点M到此双曲线的右焦点的距离为________. 解析:由题易知,双曲线的右焦点为(4,0),点M的坐标为(3,)或(3,-),则点M到此双曲线的右焦点的距离为4. 答案:4 9.求满足下列条件的双曲线的标准方程. (1)已知双曲线的焦点在y轴上,并且双曲线过点(3,-4)和(,5). (2)与双曲线-=1有公共焦点,且过点(3,2). 解:(1)由已知,可

5、设所求双曲线方程为-=1(a>0,b>0),则 解得 所以双曲线的方程为-=1. (2)设双曲线方程为-=1(a>0,b>0). 由题意知c=2. 因为双曲线过点(3,2), 所以-=1. 又因为a2+b2=(2)2, 所以a2=12,b2=8. 故所求双曲线的方程为-=1. 10.焦点在x轴上的双曲线过点P(4,-3),且点Q(0,5)与两焦点的连线互相垂直,求此双曲线的标准方程. 解:因为双曲线焦点在x轴上,所以设双曲线的标准方程为-=1(a>0,b>0),F1(-c,0),F2(c,0). 因为双曲线过点P(4,-3), 所以-=1.① 又因为点Q(0,5)与

6、两焦点的连线互相垂直, 所以·=0,即-c2+25=0. 解得c2=25.② 又c2=a2+b2,③ 所以由①②③可解得a2=16或a2=50(舍去).所以b2=9,所以所求的双曲线的标准方程是-=1. [高考水平训练] 1.已知双曲线-=1的焦点为F1,F2,点M在双曲线上,且MF1⊥x轴,则F1到直线F2M的距离为(  ) A. B. C. D. 解析:选C. 不妨设点F1(-3,0), 容易计算得出 |MF1|==, |MF2|-|MF1|=2. 解得|MF2|=. 而|F1F2|=6,在直角三角形MF1F2中, 由|MF1|·|F1F2|=|MF2|

7、·d, 求得F1到直线F2M的距离d为. 2.已知双曲线的两个焦点F1(-,0),F2(,0),P是双曲线上一点,且·=0,|PF1|·|PF2|=2,则双曲线的标准方程为________. 解析:由题意可设双曲线方程为 -=1(a>0,b>0). 由·=0,得PF1⊥PF2.根据勾股定理得 |PF1|2+|PF2|2=(2c)2,即|PF1|2+|PF2|2=20. 根据双曲线定义有|PF1|-|PF2|=±2a. 两边平方并代入|PF1|·|PF2|=2得 20-2×2=4a2,解得a2=4,从而b2=5-4=1, 所以双曲线方程为-y2=1. 答案:-y2=1 3

8、.设圆C与两圆(x+)2+y2=4,(x-)2+y2=4中的一个内切,另一个外切.求C的圆心轨迹L的方程. 解:设两圆(x+)2+y2=4,(x-)2+y2=4的圆心分别为F1(-,0),F2(,0),两圆相离, 由题意得||CF1|-|CF2||=4<2=|F1F2|, 从而得动圆的圆心C的轨迹是双曲线, 且a=2,c=,所以b==1, 所求轨迹L的方程为-y2=1. 4.如图,若F1,F2是双曲线-=1的两个焦点. (1)若双曲线上一点M到它的一个焦点的距离等于16,求点M到另一个焦点的距离; (2)若P是双曲线左支上的点,且|PF1|·|PF2|=32,试求△F1

9、PF2的面积. 解:双曲线的标准方程为-=1, 故a=3,b=4,c==5. (1)由双曲线的定义得||MF1|-|MF2||=2a=6,又双曲线上一点M到它的一个焦点的距离等于16,假设点M到另一个焦点的距离等于x,则|16-x|=6,解得x=10或x=22. 故点M到另一个焦点的距离为10或22. (2)将||PF2|-|PF1||=2a=6,两边平方得 |PF1|2+|PF2|2-2|PF1|·|PF2|=36, ∴|PF1|2+|PF2|2=36+2|PF1|·|PF2|=36+2×32=100. 在△F1PF2中,由余弦定理得 cos∠F1PF2= ==0, ∴∠F1PF2=90°, ∴S△F1PF2=|PF1|·|PF2|=×32=16.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服