ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:465.27KB ,
资源ID:4087724      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4087724.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(三角函数及解三角形知识点总结.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

三角函数及解三角形知识点总结.doc

1、1. 任意角的三角函数的定义:设是任意一个角,P是的终边上的任意一点(异于原点),它与原点的距离是,那么, 三角函数值只与角的大小有关,而与终边上点P的位置无关。2.三角函数在各象限的符号:(一全二正弦,三切四余弦) 3. 同角三角函数的基本关系式:(1)平方关系:(2)商数关系:(用于切化弦)平方关系一般为隐含条件,直接运用。注意“1”的代换4.三角函数的诱导公式诱导公式(把角写成形式,利用口诀:奇变偶不变,符号看象限) ) ) ) ) )5.特殊角的三角函数值度弧度无无6.三角函数的图像及性质函数性质图像定义域值域最值当时,;当时,当时,;当时,既无最大值也无最小值周期性奇偶性奇函数偶函数

2、奇函数单调性在上是增函数;在上是减函数在上是增函数;在上是减函数在上是增函数对称性对称中心对称轴对称中心对称轴对称中心无对称轴7.函数图象的画法:“五点法”设,令0,求出相应的值,计算得出五点的坐标,描点后得出图象; 图象变换法:这是作函数简图常用方法。8. 图像的平移变换:函数的图象与图象间的关系:要特别注意,若由得到的图象,则向左或向右平移应平移个单位例:以变换到为例向左平移个单位 (左加右减) 横坐标变为原来的倍(纵坐标不变) 纵坐标变为原来的4倍(横坐标不变) 横坐标变为原来的倍(纵坐标不变)向左平移个单位 (左加右减) 纵坐标变为原来的4倍(横坐标不变)注意:在变换中改变的始终是x。

3、9、三角恒等变换1. 两角和与差的正弦、余弦、正切公式: (1) (2)(3)(4)(5) (6) (7) =(其中,辅助角所在象限由点所在的象限决定, ,该法也叫合一变形).(8) 10、二倍角公式(1) (2)(3) 11. 降幂公式: (1) (2) 12. 升幂公式(1) (2)(3) (4)(5)13.三角变换:函数名称变换:三角变形中常常需要变函数名称为同名函数。采用公式: 其中,比如: 注意:“凑角”运用:, , 14、三角形中常用的关系:, , , 常见数据:, , ,15、正弦定理:在中,、分别为角、的对边,为的外接圆的半径,则有(R是三角形外接圆半径)注:正弦定理的变形公式

4、:,;,;16、余弦定理:在中,有,注:余弦定理的推论:,17、三角形面积公式: 注:(1)如果一个三角形两边的平方和等于第三边,那么第三边所对的角为直角;如果小于第三边的平方,那么第三边所对的角为钝角;如果大于第三边的平方,那么第三边所对角为锐角。(课本第6页右下角)例如、是的角、的对边,则:若,则;若,则,C为钝角若,则;C为锐角(2)在三角形中一些重要的知识点;1. , 2. 任意两边之和大于第三边,任意两边之差小于第三边。3. 大角对大边,小角对小边,等角对等边。4. 在三角形中,如果某一边不是最大的边,那么这条边所对的角一定是锐角。5. 在三角形中,如果某一边是最大的边,那么它所对的角可能是锐角,直角,钝角。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服