ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:904.73KB ,
资源ID:4074802      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4074802.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学不等式选修题型全归纳.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学不等式选修题型全归纳.doc

1、6.不等式选讲6.1均值不等式在证明中的应用1. (1)已知,求证:;(2)已知实数 满足:,试利用(1)求的最小值。(1)证:(当且仅当时,取等号);(2)解:,当且仅当时,的最小值是。考点:均值不等式在证明中的应用、综合法证明不等式6.2绝对值不等式6.2.1单绝对值不等式2. 已知函数若函数恰有个零点,则实数的取值范围为_.答案:解析:分别作出函数与的图像,由图知,时,函数与无交点,时,函数与有三个交点,故当,时,函数与有一个交点,当,时,函数与有两个交点,当时,若与相切,则由得:或(舍),因此当,时,函数与有两个交点,当,时,函数与有三个交点,当,时,函数与有四个交点,所以当且仅当时,

2、函数与恰有个交点.考点:单绝对值不等式3. 存在 ,使得不等式 成立,则实数 的取值范围为_答案:解析:不等式 ,即 ,令 的图象是关于 对称的一个 字形图形,其象位于第一、二象限; ,是一个开口向下,关于 轴对称,最大值为 的抛物线;要存在 ,使不等式 成立,则 的图象应该在第二象限和 的图象有交点,两种临界情况,当 时,的右半部分和 在第二象限相切: 的右半部分即 ,联列方程 ,只有一个解;即 ,即 ,得: ;此时 恒大于等于 ,所以取不到;所以 ;当 时,要使 和 在第二象限有交点,即 的左半部分和 的交点的位于第二象限;无需联列方程,只要 与 轴的交点小于 即可; 与 轴的交点为 ,所

3、以 ,又因为 ,所以 ;综上,实数 的取值范围是: ;故答案为:考点:单绝对值不等式6.2.2同系数绝对值相加型不等式4. 已知函数,.(1)当时,求不等式的解集;(2)设,且当时,求的取值范围。(1)当时,令,作出函数图像可知,当时,故原不等式的解集为;(2)依题意,原不等式化为,故对都成立,故,故,故的取值范围是.考点:同系数绝对值相加型不等式6.2.3同系数绝对值相减型不等式5. 已知函数(1)证明:(2)求不等式的解集。(1) 当时,所以,(2)由(1)可知当 时,的解集为空集;当时,的解集为当 时,的解集为综上:不等式的解集:考点:同系数绝对值相减型不等式6.2.4不同系数绝对值相加

4、减型不等式6. 设函数(1)求不等式的解集;(2)若恒成立,求实数的取值范围(1)由题意得当 时,不等式化为,解得,当时,不等式化为,解得,当时,不等式化为,解得,综上,不等式的解集为(2)由(1)得 ,若, 恒成立,则只需 ,解得 ,综上,的取值范围为考点:不同系数绝对值相加减型不等式6.3已知绝对值不等式解求参数7. 设函数(1)当时,求不等式的解集;(2)如果不等式的解集为,求的值。(1)当时,可化为。 由此可得 或。 故不等式的解集为或。(2) 由 得 此不等式化为不等式组 或即 或 因为,所以不等式组的解集为 由题设可得,故考点:已知绝对值不等式解求参数6.4已知绝对值不等式解的范围

5、求参数范围8. 已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.答案:(1)当时,所以不等式可化为,或,或解得或因此不等式的解集为或(2)由已知即为,也即若的解集包含 ,则,也就是,所以,从而,解得因此的取值范围为.考点:已知绝对值不等式解的范围求参数范围、同系数绝对值不等式相加减6.5含绝对值不等式的恒成立问题9. 已知函数,(1)若对任意的有成立,求的取值范围;(2)若不等式,对于任意的都成立,求的取值范围。(1)根据题意, 小于等于 的最小值由可得所以 (2)当 即 时, 恒成立,当 时,由绝对值不等式得性质可得 ,当且仅当 时取 , 恒成立, , ,考点:含绝对

6、值不等式的恒成立问题、同系数绝对值相加型不等式6.6含绝对值不等式的能成立问题10. 已知函数 .(1)求 的取值范围,使 为常数函数.(2)若关于 的不等式 有解,求实数 的取值范围.(1)则当 时, 为常数函数.(2)方法一:如图,结合(1)知函数的最小值为 , 实数 的取值范围为 .方法二: ; ,等号当且仅当 时成立.得函数 的最小值为 ,则实数 的取值范围为 .考点:含绝对值不等式的能成立问题6.7利用绝对值的三角不等式放缩求最值11. 已知实数满足:求证:证明:,由题设.考点:绝对值的三角不等式6.8数形结合在含参绝对值不等式中的应用12. 已知函数(1)求的解集;(2)设函数,若

7、对任意的都成立,求实数的取值范围(1),即, 或 或解得不等式:;:无解;:,所以的解集为或(2)即的图象恒在图象的上方,可以作出的图象,而图象为恒过定点,且斜率变化的一条直线,作出函数图象, 其中 ,由图可知,要使得的图象恒在图象的上方,实数的取值范围应该为 考点:同系数绝对值不等式相加型、 数形结合在含参绝对值不等式中的应用 7.证明不等式的基本方法7.1比较法证明不等式13. 设不等式的解集是,(1)试比较与的大小;(2)设表示数集的最大数求证:答案:(1)(2)见解析解析:(1)先解出.问题得证.(2)可知,所以根据不等式的性质,同向正向不等式具有可乘性,从而可证出.故.考点:比较法证

8、明不等式7.2综合法证明不等式7.3分析法证明不等式14. 已知,不等式的解集为.(1)求;(2)当时,证明:.(1)解不等式: ; 或 或或或,. (2)需证明:,只需证明,即需证明,所以原不等式成立.考点:分析法证明不等式7.4反证法证明不等式15. 设 且证明:(1) ;(2) 与 不可能同时成立.由, 得(1)由基本不等式及 ,有 ,即;(2)假设与同时成立,则由 及 得 ,同理 ,从而 ,这与 矛盾,故 与 不可能同时成立.考点:反证法证明不等式、均值不等式在证明中的应用8.5放缩法证明不等式(多为数列的题)16. 已知数列的前项和满足(1)求数列的通项公式;(2)设,记数列的前和为

9、,证明:【答案】(1);(2)详见解析.【解析】试题分析:(1)考虑到,因此可以利用条件中的式子得到数列的一个递推公式,从而即可求解;(2)由(1)可知,从而可证,进一步放缩可得,求和即可得证.试题解析:(1),当时, ,又,与两边分别相减得,得,又,数列是以为首项,为公比的等比数列,得;,得,又,.9.柯西不等式9.1柯西不等式的代数形式17. 已知关于的不等式的解集为 求实数 的值; 求的最大值. 由,得则,解得 当且仅当即时等号成立,故.考点:柯西不等式的代数形式9.2一般形式的柯西不等式18. 已知函数且的解集为,求的值;若且求证(1)的解集是故.由知由柯西不等式得考点:一般的柯西不等式第 18 页 共 18 页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服