ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:127.28KB ,
资源ID:3841165      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3841165.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(《高考导航》2022届新课标数学(理)一轮复习-第二章-第8讲-函数的图象-轻松闯关.docx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《高考导航》2022届新课标数学(理)一轮复习-第二章-第8讲-函数的图象-轻松闯关.docx

1、 1.函数y=的图象大致是(  ) 解析:选B.当x<0时,函数的图象是抛物线;当x≥0时,只需把y=2x的图象在y轴右侧的部分向下平移1个单位即可,故大致图象为B. 2.函数f(x)=-x的图象关于(  ) A.y轴对称        B.直线y=-x对称 C.坐标原点对称 D.直线y=x对称 解析:选C.由于f(x)=-x是奇函数,所以图象关于坐标原点对称. 3.(2021·河北唐山高三月考)为了得到函数y=log2的图象,可将函数y=log2x的图象上全部的点(  ) A.纵坐标缩短到原来的,横坐标不变,再向右平移1个单位 B.横坐标缩短到原来的,纵

2、坐标不变,再向左平移1个单位 C.横坐标伸长到原来的2倍,纵坐标不变,再向左平移1个单位 D.纵坐标伸长到原来的2倍,横坐标不变,再向右平移1个单位 解析:选A.y=log2=log2(x-1)=log2(x-1),由y=log2x的图象纵坐标缩短到原来的,横坐标不变,可得y=log2x的图象,再向右平移1个单位,可得y=log2(x-1)的图象,也即y=log2的图象. 4.若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为(  ) 解析:选C.要想由y=f(x)的图象得到y=-f(x+1)的图象,需要先将y=f(x)的图象关于x轴对称得到y=-f(

3、x)的图象,然后再向左平移一个单位得到y=-f(x+1)的图象,依据上述步骤可知C正确. 5.已知函数f(x)=x|x|-2x,则下列结论正确的是(  ) A.f(x)是偶函数,递增区间是(0,+∞) B.f(x)是偶函数,递减区间是(-∞,1) C.f(x)是奇函数,递减区间是(-1,1) D.f(x)是奇函数,递增区间是(-∞,0) 解析:选C.将函数f(x)=x|x|-2x去掉确定值得f(x)=画出函数f(x)的图象,如图,观看图象可知,函数f(x)的图象关于原点对称,故函数f(x)为奇函数,且在(-1,1)上单调递减. 6.(2021·石家庄二中月考)若函数y=f(x

4、)的图象过点(1,1),则函数f(4-x)的图象确定经过点________. 解析:由于函数y=f(4-x)的图象可以看作y=f(x)的图象先关于y轴对称,再向右平移4个单位得到.点(1,1)关于y轴对称的点为(-1,1),再将此点向右平移4个单位可推出函数y=f(4-x)的图象过定点(3,1). 答案:(3,1) 7.函数y=f(x)在x∈[-2,2]上的图象如图所示,则当x∈[-2,2]时,f(x)+f(-x)=________. 解析:由题图可知,函数f(x)为奇函数,所以f(x)+f(-x)=0. 答案:0 8.已知f(x)=则函数y=2f2(x)-3f(x)+1的零点

5、个数是________. 解析:方程2f2(x)-3f(x)+1=0的解为f(x)=或1.作出y=f(x)的图象,由图象知零点的个数为5. 答案:5 9.作出下列函数的图象. (1)y=|x-2|·(x+1); (2)y=. 解:(1)函数式可化为y=其图象如下图实线所示: (2)y==1-,该函数图象可由函数y=-向左平移3个单位长度再向上平移1个单位长度得到,如图所示. 10.已知函数f(x)=2x,x∈R.当m取何值时方程|f(x)-2|=m有一个解?两个解? 解:令F(x)=|f(x)-2|=|2x-2|,G(x)=m,画出F(x)的图象如图所示.

6、 由图象看出,当m=0或m≥2时,函数F(x)与G(x)的图象只有一个交点,原方程有一个解; 当0<m<2时,函数F(x)与G(x)的图象有两个交点,原方程有两个解. 1.(2021·山东滨州模拟)函数y=(x∈(-π,0)∪(0,π))的图象大致是(  ) 解析:选A.函数为偶函数,所以图象关于y轴对称,排解B,C,当x→π时,y=→0. 2.(2021·东北三校第一次联合模拟)已知函数f(x)=的值域是[0,2],则实数a的取值范围是(  ) A.(0,1] B.[1,] C.[1,2] D.[,2] 解析:选B.先作出函数f(x)=log2(1-x)+

7、1,-1≤x<0的图象,再争辩f(x)=x3-3x+2,0≤x≤a的图象.令f′(x)=3x2-3=0,得x=1(x=-1舍去),由f′(x)>0,得x>1,由f′(x)<0,得0

8、分及其关于y轴对称图形构成的,故选④. 答案:④ 4.已知m,n分别是方程10x+x=10与lg x+x=10的根,则m+n=________. 解析:在同一坐标系中作出y=lg x,y=10x,y=10-x的图象,设其交点为A,B,如图所示.设直线y=x与直线y=10-x的交点为M,联立方程解得M(5,5). ∵函数y=lg x和y=10x的图象关于直线y=x对称. ∴m+n=xA+xB=2xM=10. 答案:10 5.已知函数y=f(x)的图象关于原点对称,且x>0时,f(x)=x2-2x+3,试求f(x)在R上的表达式,并画出它的图象,依据图象写出它的单调区间.

9、 解:∵f(x)的图象关于原点对称, ∴f(-x)=-f(x),∴当x=0时,f(x)=0. 又当x>0时,f(x)=x2-2x+3, ∴当x<0时,f(x)=-x2-2x-3. ∴函数的解析式为f(x)= 作出函数的图象如图. 依据图象可得函数的增区间为(-∞,-1),(1,+∞);函数的减区间为(-1,0),(0,1). 6.(选做题)(1)已知函数y=f(x)的定义域为R,且当x∈R时,f(m+x)=f(m-x)恒成立,求证:y=f(x)的图象关于直线x=m对称; (2)若函数f(x)=log2|ax-1|的图象的对称轴是x=2,求非零实数a的值. 解:(1)证明

10、设P(x0,y0)是y=f(x)图象上任意一点, 则y0=f(x0). 又P点关于x=m的对称点为P′, 则P′的坐标为(2m-x0,y0). 由已知f(x+m)=f(m-x),得 f(2m-x0)=f[m+(m-x0)] =f[m-(m-x0)]=f(x0)=y0. 即P′(2m-x0,y0)在y=f(x)的图象上. ∴y=f(x)的图象关于直线x=m对称. (2)对定义域内的任意x,有f(2-x)=f(2+x)恒成立. ∴|a(2-x)-1|=|a(2+x)-1|恒成立, 即|-ax+(2a-1)|=|ax+(2a-1)|恒成立. 又∵a≠0, ∴2a-1=0,得a=.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服