ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:77.79KB ,
资源ID:3841096      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3841096.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2021高考数学(江苏专用-理科)二轮专题整合:突破练3.docx)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021高考数学(江苏专用-理科)二轮专题整合:突破练3.docx

1、突破练(三)1设向量a(2,sin ),b(1,cos ),为锐角(1)若ab,求sin cos 的值;(2)若ab,求sin的值解(1)由于ab2sin cos ,所以sin cos .所以(sin cos )212sin cos .又由于为锐角,所以sin cos .(2)法一由于ab,所以tan 2.所以sin 22sin cos ,cos 2cos2sin2.所以sinsin 2cos 2 .法二由于ab,所以tan 2.所以sin ,cos .因此sin 22sin cos ,cos 2cos2sin2.所以sinsin 2cos 2 .2如图,在四棱锥P ABCD中,PA底面ABC

2、D,PCAD,底面ABCD为梯形,ABDC,ABBC,PAABBC,点E在棱PB上,且PE2EB.(1)求证:平面PAB平面PCB;(2)求证:PD平面EAC.证明(1)PA底面ABCD,BC平面ABCD,PABC,又ABBC,PAABA,BC平面PAB.又BC平面PCB,平面PAB平面PCB.(2)PA底面ABCD,又AD平面ABCD,PAAD.又PCAD,又PCPAP,AD平面PAC,又AC平面PAC,ACAD.在梯形ABCD中,由ABBC,ABBC,得BAC,DCABAC.又ACAD,故DAC为等腰直角三角形DCAC(AB)2AB.连接BD,交AC于点M,连接EM,则2.在BPD中,2,

3、PDEM又PD平面EAC,EM平面EAC,PD平面EAC.3如图,椭圆1(ab0)的上,下两个顶点为A,B,直线l:y2,点P是椭圆上异于点A,B的任意一点,连接AP并延长交直线l于点N,连接PB并延长交直线l于点M,设AP所在的直线的斜率为k1,BP所在的直线的斜率为k2.若椭圆的离心率为,且过点A(0,1)(1)求k1k2的值;(2)求MN的最小值;(3)随着点P的变化,以MN为直径的圆是否恒过定点?若过定点,求出该定点;如不过定点,请说明理由解(1)由于e,b1,解得a2,所以椭圆C的标准方程为y21.设椭圆上点P(x0,y0),有y1,所以k1k2.(2)由于M,N在直线l:y2上,设

4、M(x1,2),N(x2,2),由方程知y21知,A(0,1),B(0,1),所以kBMkAN,又由(1)知kANkBMk1k2,所以x1x212,不妨设x10,则x20,则MN|x1x2|x2x1x224,所以当且仅当x2x12时,MN取得最小值4.(3)设M(x1,2),N(x2,2),则以MN为直径的圆的方程为(xx1)(xx2)(y2)20,即x2(y2)212(x1x2)x0,若圆过定点,则有x0,x2(y2)2120,解得x0,y22,所以,无论点P如何变化,以MN为直径的圆恒过定点(0,22)4某商场对A品牌的商品进行了市场调查,估计2021年从1月起前x个月顾客对A品牌的商品的

5、需求总量P(x)件与月份x的近似关系是:P(x)x(x1)(412x)(x12且xN*)(1)写出第x月的需求量f(x)的表达式;(2)若第x月的销售量g(x)(单位:件),每件利润q(x)元与月份x的近似关系为:q(x),问:该商场销售A品牌商品,估计第几月的月利润达到最大值?月利润最大值是多少?(e6403)解(1)当x1时,f(1)P(1)39.当x2时,f(x)P(x)P(x1) x(x1)(412x)(x1)x(432x) 3x(14x)f(x)3x242x(x12,xN*)(2)设月利润为h(x),h(x)q(x)g(x) h(x)当1x6时,h(x)0,当6x7时,h(x)0,当

6、1x7且xN*时,h(x)max30e612 090,当7x8时,h(x)0,当8x12时,h(x)0,当7x12且xN*时,h(x)maxh(8)2 987.综上,估计该商场第6个月的月利润达到最大,最大月利润约为12 090元5已知函数f(x)x3x2,g(x)aln x,aR.(1)若对任意x1,e,都有g(x)x2(a2)x恒成立,求a的取值范围;(2)设F(x)若P是曲线yF(x)上异于原点O的任意一点,在曲线yF(x)上总存在另一点Q,使得POQ中的POQ为钝角,且PQ的中点在y轴上,求a的取值范围解(1)由g(x)x2(a2)x,得(xln x)ax22x.由于x1,e,ln x

7、1x,且等号不能同时取得,所以ln xx,xln x0.从而a恒成立,amin.设t(x),x1,e求导,得t(x).x1,e,x10,ln x1,x22ln x0,从而t(x)0,t(x)在1,e上为增函数所以t(x)mint(1)1,所以a的取值范围是(,1(2)F(x)设P(t,F(t)为曲线yF(x)上的任意一点假设曲线yF(x)上存在一点Q(t,F(t),使POQ为钝角,则0.若t1,P(t,t3t2),Q(t,aln(t),t2aln(t)(t3t2)由于0恒成立,a(1t)ln(t)1.当t1时,a(1t)ln(t)1恒成立当t1时,a恒成立由于0,所以a0.若1t1,且t0,P

8、(t,t3t2),Q(t,t3t2),则t2(t3t2)(t3t2)0,即t4t210对1t1,且t0恒成立当t1时,同可得a0.综上所述,a的取值范围是(,06已知数列an的前三项分别为a15,a26,a38,且数列an的前n项和Sn满足Snm(S2nS2m)(nm)2,其中m,n为任意正整数(1)求数列an的通项公式及前n项和Sn;(2)求满足San33k2的全部正整数k,n.解(1)在等式Smn(S2nS2m)(nm)2中,分别令m1,m2,得Sn1(S2nS2)(n1)2,Sn2(S2nS4)(n2)2,得an22n3.在等式Snm(S2nS2m)(nm2)中,令n1,m2,得S3(S

9、2S4)1,由题设知,S211,S319,故S429.所以an22n6(nN*),即an2n2(n3,nN*)又a26也适合上式,故anSn即Snn23n1,nN*.(2)记San33k2(*)n1时,无正整数k满足等式(*)n2时,等式(*)即为(n23n1)23(n10)k2.当n10时,k131.当n10时,则kn23n1,又k2(n23n)22n23n310,所以kn23n.从而n23nkn23n1.又由于n,kN*,所以k不存在,从而无正整数k满足等式(*)当n10时,则kn23n1,由于kN*,所以kn23n2.从而(n23n1)23(n10)(n23n2)2.即2n29n270.由于nN*,所以n1或2.n1时,k252,无正整数解;n2时,k2145,无正整数解综上所述,满足等式(*)的n,k分别为n10,k131.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服