1、1名数学家10个师在其次次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力。这句话有一个非同寻常的来历。1943年以前,在大西洋上英美运输船队经常受到德国潜艇的攻击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额。为此,有位美国海军将领特地去请教了几位数学家,数学家们运用概率论分析后得出,舰队与敌潜艇相遇是一个随机大事,从数学角度来看这一问题,它具有肯定的规律性。肯定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大。美国海军接受了数学家的建议,命令舰队在指定海疆集合,再集体通
2、过危急海疆,然后各自驶向预定港口。结果奇迹消灭了:盟军舰队遭袭被击沉的概率由原来的25降为1,大大削减了损失,保证了物资的准时供应。在自然界和实际生活中,我们会遇到各种各样的现象。假如从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在肯定的条件下,它所消灭的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在肯定的条件下,消灭那种结果是无法预先确定的,这类现象称为随机现象。确定性现象,一般有着较明显得内在规律,因此比较简洁把握它。而随机现象,由于它具有不确定性,因此它成为人们争辩的重点。随机现象在肯定条件下具有多种可能发生的结果,我们把随机现象的结果称为随机大事。