ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:73.95KB ,
资源ID:3827758      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3827758.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学(北师大版)选修2-2教案:第1章-类比推理应用中错误辨析.docx)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学(北师大版)选修2-2教案:第1章-类比推理应用中错误辨析.docx

1、类比推理应用中错误辨析类比在数学思维中的作用主要表现为发觉问题、提出猜想、建立模型。欧拉曾经说过,类比是宏大的引路人,他曾多次利用类比的方法做出重大的数学发觉。然而,类比推理在全部的推理中是最不严格、最不确定的,它是一种或然推理,其结论正确与否有待实践来证明。本文所举几例正是同学在解题正不恰当的利用类比致使解题失误。应用类比推理时只有本质相同或相近的事物才能进行类比,假如把仅仅形式上相像而本质上都不相同的事物不分青红皂白的乱用类比,就会造成错误。 1、性质类比致误例1、函数的最小正周期是_.错解:由于函数ytanx的最小正周期是,所以函数的最小正周期是.剖析:从前争辩过函数的周期性,由其图象(

2、图1)可知它的最小正周期是ysinx周期的一半,由此类比;认为的周期就是ytanx周期的一半。现作出的图象(图2),易见其最小正周期仍为.2、方法类比致误例2、一张三角形纸片内有99个点,连同该三角形的顶点共102个点,这些点无任何三点共线。若以这些点为顶点把三角形纸片剪成小三角形,可得到小三角形纸片( )个。A、 B、 C、200 D199 错解:从这99(或102)个点中任取3个点,可以得到三角形的个数为(或),因而选A(或B)剖析:此题初看似几何组合问题,因而误用组合计数来计算结果。但DEC明显不合要求(图3)是否可用“去杂法”求解呢?事实证明这一想法也很难实现,下面给出两种正确解决方案

3、:解法1:设ABC内有n个点时所得符合条件的小三角形的个数我f(n),当增加一个点H后(图4),点H将它所在的BCF又分成了3个小三角形:BFH、BCH、CFH,即每增加一个点后,小三角形的个数就增加两个,于是有fn1)f(n)2,所以f(n)是公差为2的等差数列,且首项f(1)3,所以f(n)2n1,则f(99)2991199个,因而选D. 解法2:将图3中ABC内各点全部“拎”起,使之成为一个凸多面体(图5),问题转化为:已知一个多面体的顶点数V102,每个面都是三角形,求其面数F.由于楞数EF,代入欧拉公式VFE2得102FF2,所以F200,留意到ABC已被剪掉,所以正确结果我2001

4、199个,选D.点评:这一解法将平面图形类比到空间图形,转化为多面体的面数问题,进而利用欧拉公式来处理,手法之新颖令人拍案叫绝。3、类比法则产生错误 例3、求方程有实数根的条件。解:由于原方程有实数根,所以,所以,当时,原方程有实根。剖析:本题的方程是虚系数方程,条件既不是它有实数根的充分条件,也不是必要条件。正解:设方程有一实数根,则有所以,0(1)(2)由(2)得b,代入(1)得所以,当b0或b1时,原方程有实数根。点评:在复数的运算这一内容的学习中,首先要正确理解复数的各种运算法则的条件和实质。然后要明的确数集的运算性质在复数集中哪些照旧适用,哪些又不适用,不能适用的要防止实数集扩展到复

5、数集的负迁移。即:(1)|Z|2Z2(2)Z1Z2不能确定正负;(3)Z20不成立;(4)Z12Z220不能推出Z10,Z20;(5)实数集内的根式运算法则在复集内受到很大的约束,要尽量避开在复数运算中使用根号,防止滥用根式运算法则。在复数各种运算法则的应用吵仅要留意真正用,更重要的是要留意其逆向应用和变形应用。例4、若a、b都是非零向量,a3b与7a5b垂直,a4b与7a2b垂直,则a与b的夹角为_.错解:由题意得 即(1) (2)得:46a.b=23b,即:2a.b=b(3) 消去b得:2ab 所以:,所以剖析:在(3)中,不能约去b得出2ab,这一点与实数乘法是不同的。把(3)代入(1),可得于是cos所以,即a与b的夹角为。从以上几例可以看出,类比作为一种推理方法,既能成就宏大的发觉,也会导致“秀丽”的错误,所以在学习中既要大胆地、制造性地运用类比的方法提出猜想,也应明确类比并不是 具有证明效果的推理方法,对类比的结果应始终保持谨慎、探究的科学态度。通过图形印证、特例反对等各种手段进行检验,谨防类比惹了“祸”。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服