ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:36.46KB ,
资源ID:3826173      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3826173.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学(北师大版)必修四教案:1.4-正弦函数诱导公式-参考教案2.docx)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学(北师大版)必修四教案:1.4-正弦函数诱导公式-参考教案2.docx

1、正弦函数和余弦函数的定义与诱导公式 正弦函数一、教学目标:1、 学问与技能(1)进一步生疏单位圆中的正弦线;(2)理解正弦诱导公式的推导过程;(3)把握正弦诱导公式的运用;(4)能了解诱导公式之间的关系,能相互推导;(5)理解并把握正弦函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性;(6)能娴熟运用正弦函数的性质解题。2、 过程与方法通过正弦线表示,2,从而体会各正弦线之间的关系;或从正弦函数的图像中找出,2,让同学从中发觉正弦函数的诱导公式;通过正弦函数在R上的图像,让同学探究出正弦函数的性质;讲解例题,总结方法,巩固练习。3、 情感态度与价值观通过本节的学习,培育同学创新力量、探

2、究归纳力量;让同学体验自身探究成功的喜悦感,培育同学的自信念;使同学生疏到转化“冲突”是解决问题的有效途经;培育同学形成实事求是的科学态度和锲而不舍的钻研精神。 二、教学重、难点 重点: 正弦函数的诱导公式,正弦函数的性质。难点: 诱导公式的机敏运用,正弦函数的性质应用。三、学法与教学用具在上一节课的基础上,运用单位圆中正弦线或正弦函数图像中角的关系,引发同学探究出正弦函数的诱导公式;通过例题和练习把握诱导公式在解题中的作用;在正弦函数的图像中,直观推断出正弦函数的性质,并能上升到理性生疏;理解把握正弦函数的性质;以同学的自主学习和合作探究式学习为主。教学用具:投影机、三角板第一课时 正弦函数

3、诱导公式一、教学思路 【创设情境,揭示课题】在上一节课中,我们已经学习了任意角的正弦函数定义,以及终边相同的角的正弦函数值也相等,即sin(2k)sin (kZ),这一公式体现了求任意角的正弦函数值转化为求0360的角的正弦函数值。假如还能把0360间的角转化为锐角的正弦函数,那么任意角的正弦函数就可以查表求出。这就是我们这一节课要解决的问题。【探究新知】1 复习:(公式1)sin(360k+a) = sina2 对于任一0到360的角,有四种可能(其中a为不大于90的非负角)xyoP (x,y)(以下设a为任意角)3.公式2:设a的终边与单位圆交于点P(x,y),则180+a终边与单位圆交于

4、点P(-x,-y),由正弦线可知:P ,(-x,-y) sin(180+a) = -sinaxyoP(x,-y)P(x,y)M4公式3: 如图:在单位圆中作出与角的终边,同样可得: sin(-a) = -sina, 5 公式4:由公式2和公式3可得:sin(180-a) = sin180+(-a) = -sin(-a) = sina, 同理可得: sin(180-a) = sina, 6公式5:sin(360-a) = -sina【巩固深化,进展思维】1 例题讲评例1 求下列函数值(1)sin(1650); (2)sin(15015); (3)sin() 解:(1)sin(1650)sin1650sin(4360210)sin210 sin(18030)sin30 (2) sin(15015)sin15015sin(1802945) sin29450.4962 (3) sin()sin(2)sin例2化简: 解:(略,见教材P24)2 同学练习二、归纳整理,整体生疏(1)请同学回顾本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。(3)你在这节课中的表现怎样?你的体会是什么?三、课后反思

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服