ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:385.64KB ,
资源ID:3823579      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3823579.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2021高中数学北师大版选修1-1学案:《双曲线及其标准方程》.docx)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021高中数学北师大版选修1-1学案:《双曲线及其标准方程》.docx

1、第7课时双曲线及其标准方程1.了解双曲线的定义.2.把握双曲线的标准方程、几何图形.3.理解标准方程中a,b,c的关系,并能利用双曲线中a,b,c的关系处理“焦点三角形”中的相关运算.如图所示,某农场在M处有一堆肥料沿道路MA或MB送到稻田ABCD中去,已知|MA|=6,|MB|=8,|BC|=3,AMB=90,能否在稻田中确定一条界线,使位于界线一侧的点沿MA送肥料较近,而另一侧沿MB送肥料较近?若能,请建立适当的直角坐标系,求出这条界线的方程.问题1:双曲线的标准方程的定义双曲线的标准方程分两种状况:焦点在x轴上时,双曲线标准方程为(a0,b0);焦点在y轴上时,标准方程为(a0,b0).

2、问题2:双曲线的定义中应留意的问题双曲线的定义用代数式表示为MF1-MF2=2a(0ac),关于定义要重点留意两点:(1)留意定义表述中的“确定值”字眼,假如取消确定值的限制,则动点的轨迹可分为以下几种状况:若MF1-MF2=2a(0ac),则轨迹为双曲线中焦点对应的一支;若MF2-MF1=2a(0a|F1F2|)|MF1|-|MF2|=2a(02a0,b0),点A,B在双曲线右支上,线段AB经过双曲线的右焦点F2,|AB|=m,F1为另一个焦点,则ABF1的周长为().A.2a+2mB.4a+2mC.a+mD.2a+4m求适合下列条件的双曲线的标准方程:(1)a=3,c=4,焦点在x轴上.(

3、2)右焦点与抛物线y2=24x的焦点是同一个点,经过点A(6,5).已知动圆与C1:(x+3)2+y2=9外切,且与C2:(x-3)2+y2=1内切,求动圆圆心M的轨迹方程.1.双曲线x210-y22=1的焦距为().A.32B.42C.33D.432.已知方程(1+k)x2-(1-k)y2=1表示焦点在x轴上的双曲线,则k的取值范围为().A.-1k1C.k1或kF1F2问题3:(1)x2a2-y2b2=1(a0,b0)(2)y2a2-x2b2=1(a0,b0)(3)mx2+ny2=1(mnb0)x2a2-y2b2=1(a0,b0)y2a2+x2b2=1(ab0)y2a2-x2b2=1(a0

4、,b0)基础学习沟通1.D依据双曲线的定义可得.2.C由于b2=c2-a2=49-25=24,且焦点位置不确定,所以所求双曲线的标准方程为x225-y224=1或y225-x224=1.3.-1由于双曲线焦点在y轴上,所以双曲线的标准方程为y2-8k-x2-1k=1,所以k0,又(0,3)是双曲线的一个焦点,则c=3,于是有-8k-1k=32=9,解得k=-1.4.解:(1)设双曲线的标准方程为mx2+ny2=1(mn0,b0),所以a2+b2=9,16a2-15b2=1,解得a2=4,b2=5,所以所求双曲线的标准方程为y24-x25=1.重点难点探究探究一:【解析】(1)设双曲线的两个焦点

5、分别为A,B,由定义,|PA|-|PB|=4,|8-|PB|=4,|PB|=4或|PB|=12.(2)在x29-y216=1中,a=3,b=4,c2=a2+b2=25,c=5,|PF2|=|F1F2|=2c=10.又P为双曲线C的右支上一点,|PF1|-|PF2|=2a=6,|PF1|=16.过点F2作F2TPF1于T,则T为PF1的中点,且|PT|=8,|F2T|=6,SPF1F2=12166=48.【答案】(1)C(2)C【小结】双曲线x2a2-y2b2=1(a0,b0)上的点P(x0,y0)满足方程x02a2-y02b2=1(a0,b0),符合定义|PF1|-|PF2|=2a.双曲线上的

6、点P与其两个焦点F1,F2连接而成的三角形PF1F2称为焦点三角形.令|PF1|=r1,|PF2|=r2,F1PF2=,由于|F1F2|=2c,所以有:定义:|r1-r2|=2a;余弦公式:4c2=r12+r22-2r1r2cos ;面积公式:SPF1F2=12r1r2sin .一般地,在PF1F2中,通过以上三个等式,所求问题就会顺当解决.探究二:【解析】(1)(法一)椭圆x24+y2=1的焦点是(-3,0)和(3,0),双曲线的焦点也在x轴上,且c=3.设双曲线方程为x2a2-y2b2=1(a0,b0),则4a2-1b2=1且a2+b2=3.解得a2=2,b2=1,故标准方程为x22-y2

7、=1.(法二)椭圆x24+y2=1的焦点坐标为(-3,0)和(3,0),双曲线的两个焦点坐标也是(-3,0)和(3,0).点(2,1)在双曲线上,则2a=|(2+3)2+1-(2-3)2+1|=2(3+1)-2(3-1)=22,a=2.从而b2=3-2=1.双曲线的标准方程为x22-y2=1.(2)(法一)当双曲线的焦点在x轴上时,设双曲线方程为x2a2-y2b2=1(a0,b0).由P1,P2在双曲线上,知(-2)2a2-(325)2b2=1,(437)2a2-42b2=1,解之得1a2=-116,1b2=-19.不合题意,舍去;当双曲线的焦点在y轴上时,设双曲线的方程为y2a2-x2b2=

8、1(a0,b0).由P1,P2在双曲线上,知(325)2a2-(-2)2b2=1,42a2-(437)2b2=1,解之得1a2=19,1b2=116,即a2=9,b2=16.故所求双曲线方程为y29-x216=1.(法二)双曲线的焦点位置不确定,可设双曲线方程为mx2+ny2=1(mn0,b0)或y2a2-x2b2=1(a0,b0),焦点位置不定时,亦可设为mx2+ny2=1(mn0).(3)寻关系:依据已知条件列出关于a,b,c(m,n)的方程组.(4)得方程:解方程组,将a,b(m,n)代入所设方程即可求得标准方程.探究三:【解析】设动圆M的半径为r.(1)C与M内切,点A在C外.MC=r

9、-2,MA=r,MA-MC=2,点M的轨迹是以C、A为焦点的双曲线,且有a=22,c=2,b2=c2-a2=72,点M的轨迹方程为2x2-2y27=1.(2)M与C1、C2都外切,设动圆M的半径为r.MC1=r+1,MC2=r+2,MC2-MC1=1,点M的轨迹是以C2、C1为焦点的双曲线,且有a=12,c=1,b2=c2-a2=34.点M的轨迹方程为4y2-4x23=1.问题(1)(2)中的轨迹都是完整的双曲线吗?结论不是,依据双曲线的定义,轨迹都应当是双曲线的一支.于是正确解答如下:设动圆M的半径为r.(1)C与M内切,点A在C外.MC=r-2,MA=r,MA-MC=2.点M的轨迹是以C、

10、A为焦点的双曲线的左支,且有a=22,c=2,b2=c2-a2=72,点M的轨迹方程为2x2-2y27=1(x-22).(2)M与C1、C2都外切,设动圆M的半径为r,MC1=r+1,MC2=r+2,MC2-MC1=1,点M的轨迹是以C2、C1为焦点的双曲线的上支,且有a=12,c=1,b2=c2-a2=34.易求两圆交点坐标为(154,34),观看图像可知,x必需满足x154,点M的轨迹方程为4y2-4x23=1(y12,x154).【小结】假如求解的动点轨迹方程是双曲线方程,要特殊留意所得轨迹是双曲线的两支还是其中一支.思维拓展应用应用一:B设ABF1的周长为Z,则Z=|AF1|+|BF1

11、|+|AB|=(|AF1|-|AF2|)+(|BF1|-|BF2|)+|AF2|+|BF2|+|AB|=(|AF1|-|AF2|)+(|BF1|-|BF2|)+2|AB|=2a+2a+2m=4a+2m.应用二:(1)由题设a=3,c=4,由c2=a2+b2得,b2=c2-a2=42-32=7.由于双曲线的焦点在x轴上,所以所求双曲线的标准方程为x29-y27=1.(2)由y2=24x得抛物线焦点坐标为(6,0),c=6.由于点A(6,5)在双曲线上,所以点A与两焦点的距离的差的确定值是常数2a,即2a=|(6+6)2+(5-0)2-(6-6)2+(5-0)2|=|13-5|=8,则a=4,b2

12、=c2-a2=62-42=20.因此,所求双曲线的标准方程是x216-y220=1.应用三:设动圆圆心M的坐标为(x,y),半径为r,则|MC1|=r+3,|MC2|=r-1,|MC1|-|MC2|=r+3-r+1=40,1-k0,解得k-1,k1,即-1k1.3.33由双曲线方程x264-y236=1知,a=8,b=6,则c=a2+b2=10.P是双曲线上一点,|PF1|-|PF2|=2a=16,又|PF1|=17,|PF2|=1或|PF2|=33.又|PF2|c-a=2,|PF2|=33.4.解:当k=0时,方程变为y=2,表示两条与x轴平行的直线;当k=1时,方程变为x2+y2=4表示圆心在原点,半径为2的圆;当k0时,方程变为y24-x2-4k=1,表示焦点在y轴上的双曲线;当0k1时,方程变为x24k+y24=1,表示焦点在y轴上的椭圆.全新视角拓展44可知a=3,b=4,c=5,由双曲线的定义得|PF|-|PA|=6,|QF|-|QA|=6,两个等式相加得|PF|+|QF|=28,故PQF的周长为44.思维导图构建差的确定值小于x2a2-y2b2=1(a0,b0)y2a2-x2b2=1(a0,b0)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服