ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:109.73KB ,
资源ID:3823549      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3823549.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学(北师大版)选修2-1教案:第2章-空间向量的运算-2.docx)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学(北师大版)选修2-1教案:第2章-空间向量的运算-2.docx

1、2.2 空间向量的数乘运算学习目标 1. 把握空间向量的数乘运算律,能进行简洁的代数式化简;2. 理解共线向量定理和共面对量定理及它们的推论; 3. 能用空间向量的运算意义及运算律解决简洁的立体几何中的问题学习过程 一、课前预备(预习教材,找出怀疑之处)复习1:化简:(1) 5()+4();(2) .复习2:在平面上,什么叫做两个向量平行?在平面上有两个向量, 若是非零向量,则与平行的充要条件是 二、新课导学学习探究探究任务一:空间向量的共线问题:空间任意两个向量有几种位置关系?如何判定它们的位置关系?新知:空间向量的共线:1. 假如表示空间向量的 所在的直线相互 或 ,则这些向量叫共线向量,

2、也叫平行向量. 2. 空间向量共线:定理:对空间任意两个向量(), 的充要条件是存在唯一实数,使得 推论:如图,l为经过已知点A且平行于已知非零向量的直线,对空间的任意一点O,点P在直线l上的充要条件是 试试:已知 ,求证: A,B,C三点共线. 反思:充分理解两个向量共线向量的充要条件中的,留意零向量与任何向量共线.典型例题例1 已知直线AB,点O是直线AB外一点,若,且x+y1,试推断A,B,P三点是否共线?变式:已知A,B,P三点共线,点O是直线AB外一点,若,那么t 例2 已知平行六面体,点M是棱AA的中点,点G在对角线AC上,且CG:GA=2:1,设=,试用向量表示向量.变式1:已知

3、长方体,M是对角线AC中点,化简下列表达式:(1) ;(2) (3) 变式2:如图,已知不共线,从平面外任一点,作出点,使得:(1)(2)(3)(4). 小结:空间向量的化简与平面对量的化简一样,加法留意向量的首尾相接,减法留意向量要共起点,并且要留意向量的方向. 动手试试练1. 下列说法正确的是( )A. 向量与非零向量共线,与共线,则与 共线;B. 任意两个共线向量不愿定是共线向量;C. 任意两个共线向量相等;D. 若向量与共线,则. 2. 已知,若,求实数 三、总结提升学习小结1. 空间向量的数乘运算法则及它们的运算律;2. 空间两个向量共线的充要条件及推论. 学问拓展平面对量仅限于争辩平面图形在它所在的平面内的平移,而空间向量争辩的是空间的平移,它们的共同点都是指“将图形上全部点沿相同的方向移动相同的长度”,空间的平移包含平面的平移. 当堂检测:1. 下列说法正确的是( )A.与非零向量共线,与共线,则与共线B. 任意两个相等向量不愿定共线C. 任意两个共线向量相等D. 若向量与共线,则2. 正方体中,点E是上底面的中心,若,则x ,y ,z . 3. 若点P是线段AB的中点,点O在直线AB外,则 + .4. 平行六面体, O为AC与BD的交点,则 5. 已知平行六面体,M是AC与BD交点,若,则与相等的向量是( )A. ; B. ;C. ; D. . 课后作业:

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服