ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:294.37KB ,
资源ID:3822656      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3822656.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022届高考数学(文科人教A版)大一轮课时作业:8.5-椭圆-.docx)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022届高考数学(文科人教A版)大一轮课时作业:8.5-椭圆-.docx

1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(四十七)椭圆(25分钟60分)一、选择题(每小题5分,共25分)1.已知椭圆与双曲线=1的焦点相同,且椭圆上任意一点到两焦点的距离之和为10,那么椭圆的离心率等于()A.B.C.D.【解析】选B.由于双曲线的焦点在x轴上,所以设椭圆的方程为=1(ab0),由于椭圆上任意一点到两焦点的距离之和为10,所以依据椭圆的定义可得2a=10a=5,则c=4,e=选B.2.(2021烟台模拟)一个椭圆中心在原点,焦点F1,F2在x轴上,P(2,)是椭圆上一点,且|PF1

2、|,|F1F2|,|PF2|成等差数列,则椭圆方程为()A.+=1B.+=1C.+=1D.+=1【解析】选A.设椭圆的标准方程为=1(ab0).由点P(2,)在椭圆上知=1.又|PF1|,|F1F2|,|PF2|成等差数列,则|PF1|+|PF2|=2|F1F2|,即2a=22c,又c2=a2-b2,联立得a2=8,b2=6.【加固训练】已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为()A.-=1B.+ =1C.-=1D.+=1【解析】选D.设圆M的半径为r,则|MC1|+|MC2|=(13-r

3、)+(3+r)=16,所以M的轨迹是以C1,C2为焦点的椭圆,且2a=16,2c=8,故所求的轨迹方程为+=1.3.设椭圆C:x2a2+y2b2=1(ab0)的左、右焦点分别为F1,F2,P是C上的点,PF2F1F2,PF1F2=30,则C的离心率为()A.36B.13C.12D.33【解析】选D.在RtPF1F2中,令|PF2|=1,由于PF1F2=30,所以|PF1|=2,|F1F2|=3.所以e=2c2a=|F1F2|PF1|+|PF2|=33.故选D.4.(2021聊城模拟)椭圆=1(ab0)的左、右焦点分别为F1,F2,P是椭圆上的一点,l:x=,且PQl,垂足为Q,若四边形PQF1

4、F2为平行四边形,则椭圆的离心率的取值范围是()A.(,1)B.(0,)C.(0,)D.(,1)【解析】选A.设点P(x1,y1),由于PQl,故|PQ|=x1+,由于四边形PQF1F2为平行四边形,所以|PQ|=|F1F2|=2c,即x1+=2c,则有x1=2c-a,所以2c2+ac-a20,即2e2+e-10,解得e,由于0e1,所以eb0)的左右焦点分别为F1,F2,若椭圆C上恰有8个不同的点P,使得F1F2P为直角三角形,则椭圆C的离心率的取值范围是()A.(0,)B.(0,C.(,1)D.,1)【解析】选C.由题意,问题等价于椭圆上存在四个点P使得直线PF1与直线PF2垂直,所以|O

5、P|=cb,即c2a2-c2,所以ac,由于e=,0e1,所以eb0)的左、右焦点F1,F2所作的两条相互垂直的直线l1,l2的交点在此椭圆的内部,则此椭圆的离心率的取值范围是.【解题提示】关键是由l1,l2的交点在此椭圆的内部,得到a,b,c间的关系,进而求得离心率e的取值范围.【解析】由已知得交点P在以F1F2为直径的圆x2+y2=c2上.又点P在椭圆内部,所以有c2b2,又b2=a2-c2,所以有c2a2-c2,即2c2b0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|=10,|BF|=8,cosABF=,则C的离心率为.【解题提示】利用余弦定理确定|AF|

6、,进而判定ABF的外形,然后利用椭圆定义及直角三角形性质确定离心率.【解析】如图,设|AF|=x,则cosABF=解得x=6(负值舍去),所以AFB=90,由椭圆及直线关于原点对称可知|AF1|=8,且FAF1=FAB+FBA=90,FAF1是直角三角形,所以|F1F|=10,故2a=8+6=14,2c=10,所以答案:三、解答题(每小题10分,共20分)9.(2022江苏高考)如图,在平面直角坐标系xOy中,F1,F2分别是椭圆=1(ab0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为,且|BF2|

7、=,求椭圆的方程.(2)若F1CAB,求椭圆离心率e的值.【解析】(1)由题意F2(c,0),B(0,b),|BF2|=又C,所以=1,解得b=1,所以椭圆方程为+y2=1.(2)直线BF2方程为=1,与椭圆方程=1联立方程组,解得A点坐标为则C点的坐标为又F1(-c,0),kF1C=又kAB=-,由F1CAB,得(-)=-1,即b4=3a2c2+c4,所以(a2-c2)2=3a2c2+c4,化简得e=10.(2021济南模拟)椭圆C:x2a2+y2b2=1(ab0)的离心率为32,长轴端点与短轴端点间的距离为5.(1)求椭圆C的方程.(2)设过点D(0,4)的直线l与椭圆C交于E,F两点,O

8、为坐标原点,若OEF为直角三角形,求直线l的斜率.【解析】(1)由已知ca=32,a2+b2=5,又a2=b2+c2,解得a2=4,b2=1,所以椭圆C的方程为x24+y2=1.(2)依据题意,过点D(0,4)满足题意的直线斜率存在,设l:y=kx+4,联立x24+y2=1,y=kx+4,消去y得(1+4k2)x2+32kx+60=0,=(32k)2-240(1+4k2)=64k2-240,令0,解得k2154.设E,F两点的坐标分别为(x1,y1),(x2,y2),(i)当EOF为直角时,则x1+x2=-32k1+4k2,x1x2=601+4k2,由于EOF为直角,所以OEOF=0,即x1x

9、2+y1y2=0,所以(1+k2)x1x2+4k(x1+x2)+16=0,所以15(1+k2)1+4k2-32k21+4k2+4=0,解得k=19.(ii)当OEF或OFE为直角时,不妨设OEF为直角,此时,kOEk=-1,所以y1x1y1-4x1=-1,即x12=4y1-y12,又x124+y12=1,将代入,消去x1得3y12+4y1-4=0,解得y1=23或y1=-2(舍去),将y1=23代入,得x1=235,所以k=y1-4x1=5,经检验,所求k值均符合题意.综上,k的值为19或5. (20分钟40分)1.(5分)已知椭圆=1,若此椭圆上存在不同的两点A,B关于直线y=4x+m对称,

10、则实数m的取值范围是()A.(,)B.(-,)C.(-, )D.(-,)【解析】选B.设A(x1,y1),B(x2,y2),AB的中点M(x,y),kAB=-,x1+x2=2x,y1+y2=2y,3x12+4y12=12,3x22+4y22=12,两式相减得3(x22-x12)+4(y22-y12)=0,即y1+y2=3(x1+x2),即y=3x,与y=4x+m联立得x=-m,y=-3m,而M(x,y)在椭圆的内部,则1,即-m2C.tb0),以O为圆心,短半轴长为半径作圆O,过椭圆的长轴的一端点P作圆O的两条切线,切点为A,B,若四边形PAOB为正方形,则椭圆的离心率为()【解析】选B.由题

11、意知|OA|=|AP|=b,|OP|=a,OAAP,所以2b2=a2,故e=故选B.3.(5分)已知F1,F2是椭圆x2a2+y2b2=1(ab0)的左、右焦点,过F1的直线与椭圆相交于A,B两点,若AB=0,|AB|=|,则椭圆的离心率为.【解析】在RtABF2中,设|AF2|=m,则|AB|=m,|BF2|=2m,所以4a=(2+2)m.又在RtAF1F2中,|AF1|=2a-m=22m,|F1F2|=2c,所以(2c)2=(22m)2+m2=32m2,则2c=62m.所以椭圆的离心率e=2c2a=621+22=6-3.答案:6-3【加固训练】直线y=-x与椭圆C:=1(ab0)交于A,B

12、两点,以线段AB为直径的圆恰好经过椭圆的右焦点,则椭圆C的离心率为()A.B.C.-1D.4-2【解析】选C.设椭圆的左、右焦点分别为F1,F2,由题意可得|OF2|=|OA|=|OB|=|OF1|=c,由y=-x得AOF2=,AOF1=.所以|AF2|=c,|AF1|=c.由椭圆定义知,|AF1|+|AF2|=2a,所以c+c=2a,所以e=-1.4.(12分)(2021青岛模拟)已知椭圆C: =1(ab0)的焦距为2,且过点(1,),右焦点为F2,设A,B是C上的两个动点,线段AB的中点M的横坐标为-,线段AB的中垂线交椭圆C于P,Q两点.(1)求椭圆C的方程.(2)求F2PF2Q的取值范

13、围.【解析】(1)由于焦距为2,所以a2-b2=1.由于椭圆C过点(1,),所以=1,故a2=2,b2=1,所以椭圆C的方程为+y2=1.(2)争辩当直线AB垂直于x轴,直线AB方程为x=-,此时P(-,0),Q(,0),得F2PF2Q=-1.当直线AB不垂直于x轴时,设直线AB的斜率为k(k0),M(-,m)(m0),A(x1,y1),B(x2,y2),利用“点差法”,首先得到4mk=1;得到PQ的直线方程为y-m=-4m(x+),即y=-4mx-m.联立消去y,整理得(32m2+1)x2+16m2x+2m2-2=0.设P(x3,y3),Q(x4,y4),应用根与系数的关系,得到F2PF2Q

14、=依据M(-,m)在椭圆的内部,得到0m20,设M(x1,y1),N(x2,y2),MN中点的横坐标为x0,则x0=x1+x22=t(t2-h)2(1+t2),设线段PA中点的横坐标为x3=1+t2,由已知得x0=x3,即t(t2-h)2(1+t2)=1+t2,明显t0,所以h=-(t+1t+1),当t0时,t+1t2,当且仅当t=1时取等号,此时h-3,不满足式,故舍去;当tb0)的离心率e=,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.(1)求椭圆C的方程.(2)椭圆C上一动点P(x0,y0)关于直线y=2x的对称点为P1(x1,y1),求3x1-4y1的取值范围.【解析】(1)依题意知,2a=4,所以a=2.由于所以c=,b=所以所求椭圆C的方程为=1.(2)由于点P(x0,y0)关于直线y=2x的对称点为P1(x1,y1),所以解得所以3x1-4y1=-5x0.由于点P(x0,y0)在椭圆C:=1上,所以-2x02,则-10-5x010.所以3x1-4y1的取值范围为-10,10.关闭Word文档返回原板块

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服