1、 花坪民族中学教师集体备课 八年级 数学 集体 备课组 成员: 杨学志 肖金戈 杨兴权 付志海 付仁翠 谭华 授课时间: 2015年3月 教学内容 二次根式(1) 教学课时 共 课时 教学目标 1. 理解二次根式的概念,并利用(a≥0)的意义解答具体题目. 2、提出问题,根据问题给出概念,应用概念解决实际问题. 教学重点 重点:形如(a≥0)的式子叫做二次根式的概念; 教学难点 利用“(a≥0)”解决具体问题 是否使用多媒体教学 是 多媒体教学链接 链接课件 集体备课内容 个人二次修案 学生活动 一、创设情境
2、 问题:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标(,). 二、探索新知 很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号. (学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当a<0,有意义吗? 老师点评:(略) 例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).
3、 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0. 解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、. 例2.当x是多少时,在实数范围内有意义? 分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义. 解:由3x-1≥0,得:x≥ 当x≥时,在实数范围内有意义. 三、巩固练习 教材P3练习1、2、3. 四、应用拓展 例3.当x是多少时,+在实数范围内有意义? 分析:要使+在实数范围内有意义,必须同时满
4、足中的≥0和中的x+1≠0. 解:依题意,得 由①得:x≥- 由②得:x≠-1 当x≥-且x≠-1时,+在实数范围内有意义. 例4(1)已知y=++5,求的值.(答案:2) (2)若+=0,求a2004+b2004的值.(答案:) 五、归纳小结(学生活动,老师点评) 本节课要掌握: 1.形如(a≥0)的式子叫做二次根式,“”称为二次根号. 2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 六、布置作业 课后作业:《同步训练》
5、 教学反思 花坪民族中学教师集体备课 八年级 数学 集体 备课组 成员: 杨学志 肖金戈 杨兴权 付志海 付仁翠 谭华 授课时间: 2015年3月 教学内容 二次根式(2) 教学课时 共 课时 教学目标 1、理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简. 2、通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题. 教学重点 .重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用 教
6、学难点 难点、:用分类思想的方法导出(a≥0)是一个非负数;用探究的方法导出()2=a(a≥0). 是否使用多媒体教学 多媒体教学链接 链接课件 集体备课内容 个人二次修案 学生活动 一、复习引入 (学生活动)口答 1.什么叫二次根式? 2.当a≥0时,叫什么?当a<0时,有意义吗? 老师点评(略). 二、探究新知 议一议:(学生分组讨论,提问解答) (a≥0)是一个什么数呢? 老师点评:根据学生讨论和上面的练习,我们可以得出 (a≥0)是一个非负数. 做一做:根据算术平
7、方根的意义填空: ()2=_______;()2=_______;()2=______;()2=_______; ()2=______;()2=_______;()2=_______. 老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4. 同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以 ()2=a(a≥0) 例1 计算 1.()2 2.(3)2 3.()2 4.()2 分析:我们可以直接利用()2=a(a≥0)的结论解题. 解:()2 =
8、3)2 =32·()2=32·5=45, ()2=,()2=. 三、巩固练习 计算下列各式的值: ()2 ()2 ()2 ()2 (4)2 四、应用拓展 例2 计算 1.()2(x≥0) 2.()2 3.()2 4.()2 例3在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 分析:(略) 五、归纳小结 本节课应掌握: 1.(a≥0)是一个非负数; 2.()2=a(a≥0);
9、反之:a=()2(a≥0). 教学反思 八年级 数学 集体 备课组 成员: 杨学志 肖金戈 杨兴权 付志海 付仁翠 谭华 授课时间: 2015年3月 教学内容 二次根式(3) 教学课时 共 课时 教学目标 1、 理解=a(a≥0)并利用它进行计算和化简. 2、通过具体数据的解答,探究=a(a≥0),并利用这个结论解决具体问题. 教学重点 重点:=a(a≥0). 教学难点 难点:探究结论. 是否使用多媒体教学 多媒体教学链接 链接课
10、件 集体备课内容 个人二次修案 学生活动 一、复习引入 老师口述并板收上两节课的重要内容; 1.形如(a≥0)的式子叫做二次根式; 2.(a≥0)是一个非负数; 3.()2=a(a≥0). 那么,我们猜想当a≥0时,=a是否也成立呢?下面我们就来探究这个问题. 二、探究新知 (学生活动)填空: =_______;=_______;=______; =________;=________;=_______. (老师点评):根据算术平方根的意义,我们可以得到: =2;=0.01;
11、0;=. 因此,一般地:=a(a≥0) 例1 化简 (1) (2) (3) (4) 分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52, (4)(-3)2=32,所以都可运用=a(a≥0)去化简. 解:(1)==3 (2)==4 (3)==5 (4)==3 三、巩固练习 教材P5练习2. 四、应用拓展 例2 填空:当a≥0时,=_____;当a<0时,=_______,并根据这一性质回答下列问题. (1)若=a,则a可以是什么数? (2)若=-a,
12、则a可以是什么数? (3)>a,则a可以是什么数? 五、归纳小结 本节课应掌握:=a(a≥0)及其运用,同时理解当a<0时,=-a的应用拓展. 教学反思 花坪民族中学教师集体备课 八年级 数学 集体 备课组 成员: 杨学志 肖金戈 杨兴权 付志海 付仁翠 谭华 授课时间: 2015年3月 教学内容 二次根式的乘除 教学课时 共 课时 教学目标 1、 理解=(a≥0,b>0)和=(a≥0,b>0)及利用它们进行运算. 2、利用具体数据,通过学生练习活动
13、发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简. 教学重点 理解=(a≥0,b>0),=(a≥0,b>0)及利用它们进行计算和化简. 教学难点 发现规律,归纳出二次根式的除法规定. 是否使用多媒体教学 多媒体教学链接 链接课件 集体备课内容 个人二次修案 学生活动 一、复习引入 (学生活动)请同学们完成下列各题: 1.写出二次根式的乘法规定及逆向等式. 2.填空 (1)=________,=_________; (2)=________,=________; (3)
14、 (4)=________,=________. 规律:______;______;_______; _______. 3.利用计算器计算填空: (1)=_________,(2)=_________,(3)=______,(4)=________. 规律:______;_______;_____;_____。 每组推荐一名学生上台阐述运算结果. (老师点评) 二、探索新知 刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:
15、 一般地,对二次根式的除法规定: =(a≥0,b>0), 反过来,=(a≥0,b>0) 下面我们利用这个规定来计算和化简一些题目. 例1.计算:(1) (2) (3) (4) 分析:上面4小题利用=(a≥0,b>0)便可直接得出答案. 解:(1)===2 (2)==×=2 (3)===2 (4)===2 例2.化简: (1) (2) (3) (4) 分析:直接利用=(a≥0,b>0)就可以达到化简之目的. 解:(1)= (2)= (3)= (4)= 三、巩
16、固练习
教材P11练习1.
四、应用拓展
例3.已知,且x为偶数,求(1+x)的值.
分析:式子=,只有a≥0,b>0时才能成立.
因此得到9-x≥0且x-6>0,即6
17、 教学反思 八年级 数学 集体 备课组 成员: 杨学志 肖金戈 杨兴权 付志海 付仁翠 谭华 授课时间: 2015年3月 教学内容 二次根式的加减 教学课时 共 课时 教学目标 知识与技能:理解和掌握二次根式加减的方法. 过程与方法:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简. 情感态度与价值观:体会合作学习的先进性。 教学重点 二次根式化简为最简根式. 教学难点 会判定是否是最简二次根式
18、.. 是否使用多媒体教学 多媒体教学链接 链接课件 集体备课内容 个人二次修案 学生活动 一、复习引入 学生活动:计算下列各式. (1)2x+3x; (2)2x2-3x2+5x2; (3)x+2x+3y; (4)3a2-2a2+a3 教师点评:上面题目的结果,实际上是我们以前所学的同类项合并.同类项合并就是字母不变,系数相加减. 二、探索新知 学生活动:计算下列各式. (1)2+3 (2)2-3+5 (3)+2+3 (4)3-2+ 老师点评: (1)如果我们把当成x,不
19、就转化为上面的问题吗? 2+3=(2+3)=5 (2)把当成y; 2-3+5=(2-3+5)=4=8 (3)把当成z; +2+ =2+2+3=(1+2+3)=6 (4)看为x,看为y. 3-2+ =(3-2)+ =+ 因此,二次根式的被开方数相同是可以合并的,如2与表面上看是不相同的,但它们可以合并吗?可以的. (板书)3+=3+2=5 3+=3+3=6 所以,二次根式加减时,可以先将二次根式化成最简二次根式,
20、再将被开方数相同的二次根式进行合并. 例1.计算 (1)+ (2)+ 分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并. 解:(1)+=2+3=(2+3)=5 (2)+=4+8=(4+8)=12 例2.计算 (1)3-9+3 (2)(+)+(-) 解:(1)3-9+3=12-3+6=(12-3+6)=15 (2)(+)+(-)=++- =4+2+2-=6+ 三、巩固练习 教材P16 练习1、2.
21、 四、应用拓展 例3.已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值. 分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,再合并同类二次根式,最后代入求值. 解:∵4x2+y2-4x-6y+10=0 ∵4x2-4x+1+y2-6y+9=0 ∴(2x-1)2+(y-3)2=0 ∴x=,y=3 原式=+y2-x2+5x =2x+-x+5 =x+6 当x=,y=3时, 原式=×+6=+3 五、归纳小结 本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并. 教学反思 14






