ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:89.06KB ,
资源ID:3815355      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3815355.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2021届高中数学人教版高考复习知能演练轻松闯关-第六章第2课时.docx)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021届高中数学人教版高考复习知能演练轻松闯关-第六章第2课时.docx

1、 [基础达标] 1.(2022·吉林长春毕业班其次次调研)已知集合P={x|x2-x-2≤0},Q={x|log2(x-1)≤1},则(∁RP)∩Q=(  ) A.[2,3] B.(-∞,1]∪[3,+∞) C.(2,3] D.(-∞,-1]∪(3,+∞) 解析:选C.依题意,得P={x|-1≤x≤2},Q={x|10,不等式-c0,

2、∴-

3、当m=2时,对任意的x不等式都成立; ②当m-2<0时,Δ=4(m-2)2+16(m-2)<0, ∴-2<m<2, 综合①②,得m∈(-2,2]. 5.(2022·陕西西安质检)在R上定义运算:=ad-bC.若不等式))≥1对任意实数x恒成立,则实数a的最大值为(  ) A.- B.- C. D. 解析:选D.原不等式等价于x(x-1)-(a-2)(a+1)≥1,即x2-x-1≥(a+1)(a-2)对任意x恒成立,x2-x-1=-≥-,所以-≥a2-a-2,-≤a≤. 6.不等式|x(x-2)|>x(x-2)的解集是________. 解析:不等式|x(x-2)|>x

4、x-2)等价于x(x-2)<0,解得00的解集是________. 解析:原不等式即(x-a)<0,由0

5、3 860+500+2[500(1+x%)+500(1+x%)2]≥7 000, 解得1+x%≤-2.2(舍)或1+x%≥1.2, ∴xmin=20. 答案:20 9.若不等式ax2+5x-2>0的解集是{x|<x<2}. (1)求实数a的值; (2)求不等式ax2-5x+a2-1>0的解集. 解:(1)由题意知a<0,且方程ax2+5x-2=0的两个根为,2,代入解得a=-2. (2)由(1)知不等式为-2x2-5x+3>0, 即2x2+5x-3<0,解得-3<x<, 即不等式ax2-5x+a2-1>0的解集为{x|-3

6、现有两家ISP公司可供选择.公司A每小时收费1.5元;公司B在用户每次上网的第1小时内收费1.7元,第2小时内收费1.6元,以后每小时削减0.1元(若用户一次上网时间超过17小时,按17小时计算).假设该同学一次上网时间总是小于17小时,那么该同学如何选择ISP公司较省钱? 解:假设一次上网x(x<17)小时,则公司A收取的费用为1.5x元, 公司B收取的费用为1.7+(1.7-0.1)+(1.7-0.2)+…+[1.7-(x-1)×0.1]=(元). 由>1.5x(0

7、B两公司收费相等,当51时得1

8、4,5]. 2.(2022·河南洛阳阶段测试)若不等式x2+ax-2>0在区间[1,5]上有解,则a的取值范围是(  ) A. B. C.(1,+∞) D. 解析:选B.由Δ=a2+8>0,知方程恒有两个不等实根,又知两根之积为负,所以方程必有一正根、一负根. 于是不等式在区间[1,5]上有解的充要条件是f(5)≥0,f(1)≤0,解得a≥-,且a≤1,故a的取值范围为. 3.若关于x的不等式ax2-x+2a<0的解集为∅,则实数a的取值范围是________. 解析:依题意可知,问题等价于ax2-x+2a≥0恒成立, 当a=0时,-x≥0不恒成立,故a=0舍去;

9、当a≠0时,要使ax2-x+2a≥0恒成立, 即f(x)=ax2-x+2a的图象不在x轴的下方, ∴即 解得a≥,即a的取值范围是. 答案: 4.已知y=f(x)是偶函数,当x>0时,f(x)=(x-1)2;若当x∈时,n≤f(x)≤m恒成立,则m-n的最小值为________. 解析:当x<0时,-x>0,f(x)=f(-x)=(x+1)2, ∵x∈, ∴f(x)min=f(-1)=0, f(x)max=f(-2)=1, ∴m=1,n=0,m-n=1. 答案:1 5.已知不等式mx2-2x+m-2<0. (1)若对于全部的实数x,不等式恒成立,求m的取值范围; (

10、2)设不等式对于满足|m|≤2的一切m的值都成立,求x的取值范围. 解:(1)对全部实数x,不等式mx2-2x+m-2<0恒成立, 即函数f(x)=mx2-2x+m-2的图象全部在x轴下方, 当m=0时,-2x-2<0,明显对任意x不能恒成立; 当m≠0时,由二次函数的图象可知, 解得m<1-, 综上可知m的取值范围是(-∞,1-). (2)设g(m)=(x2+1)m-2x-2,它是一个以m为自变量的一次函数,由>0知g(m)在[-2,2]上为增函数, 则由题意只需g(2)<0即可, 即2x2+2-2x-2<0,解得0<x<1. 即x的取值范围是(0,1). 6.(选

11、做题)设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m0的解集; (2)若a>0,且00, 即a(x+1)(x-2)>0. 当a>0时,不等式F(x)>0的解集为{x|x<-1或x>2}; 当a<0时,不等式F(x)>0的解集为{x|-10,且00. ∴f(x)-m<0,即f(x)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服